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This paper reports a new fully collocation algorithm for the numerical solution
of hyperbolic partial differential equations (PDEs) of second order in a semi-infinite do-
main, using Jacobi rational Gauss-Radau collocation (JR-GR-C) method. The widely
applicable, efficiency, and high accuracy are the more advantages of the collocation
method. The series expansion in Jacobi rational functions is the main step for solving
the mentioned problems. The expansion coefficients are then determined by reduc-
ing the hyperbolic equations with its boundary and initial conditions to a system of
algebraic equations for these coefficients. This system may be solved analytically or
numerically in step-by-step manner by using Newtons iterative method. Numerical re-
sults are consistent with the theoretical analysis and indicating the high accuracy and
effectiveness of this algorithm.
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1. Introduction

Several problems in science and engineering fields are discussed in semi-infinite
domains. The earthquake engineering field and underwater acoustic problems can be
modeled as semi-infinite domain PDEs. Spectral methods based on specific poly-
nomials (Laguerre, Hermite, rational Legendre polynomials --- etc) [1]-[7] can be
used to numerically solve problems on semi-infinite domains. The mapping problem
in an unbounded domain to that in a bounded domains has been used in [8]-[11] to
approximate the problems in unbounded domain. For more details about numerical
solutions for unbounded domain problems, see for example [12]- [21].

In recent years there has been a high level of interest of employing spectral
methods for numerically solving many types of integral and differential equations,
due to their ease of applying them for finite and infinite domains [22]-[30]. The speed
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of convergence is one of the great advantages of spectral method. Besides, that the
spectral methods have exponential rates of convergence; they also have high level
of accuracy [31]-[37] method. The main idea of all versions of spectral methods
is to express the spectral solution of the problem as a finite sum of certain basis
functions (orthogonal polynomials or combination of orthogonal polynomials) and
then to choose the coefficients in order to minimize the difference between the exact
and numerical solutions as well as possible. The spectral collocation method is a
specific type of spectral methods, that is more applicable and widely used to solve
almost types of differential equations.

In the present paper, we numerically solve two hyperbolic equations of second
order. The main aim of this paper is to extend the application of JR-GR-C scheme
for the numerical solutions of the hyperbolic equations in semi-infinite domain. The
solution u(x,t) of such equation is approximated as u (z,t) which can be expressed
as a finite expansion of Jacobi rational polynomials for the space and time variables,
and then we evaluate the partial derivatives of finite expansion of uy(z,t) at the
Jacobi rational Gauss-Radau quadrature points. Substituting these approximations in
the underlined equation provides a system of algebraic equations. This system may
be solved analytically or numerically by Newtons iterative method. This scheme is
one of the suitable methods for solving system of algebraic equations.

The outline of this paper is arranged as follows. We present few revelent prop-
erties of Jacobi rational polynomials in the coming section. In Section 3, we in-
troduce JR-GR-C method for hyperbolic equations of second order in semi-infinite
domain. Numerical examples and simulations are presented in Section 4 to show the
effectiveness and accuracy of the underlying method. In the last section, we present
some observations and conclusions.

2. Preliminaries

The standard Jacobi polynomial of degree k (P,ga’ﬂ ) (z), k=0,1,---) with the
parameters o > —1, 8 > —1, satisfy the following relations

P (—z) = (~1)* P (),
(—DFT(E+B+1)
ED(B+1) ey

(a,8) B Mk+a+1)
B ()= ET(a+1)

G
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Let w(®#) (z) = (1 —2)*(1 +z)?, then we define the weighted space L?U(M) as
usual, equipped with the following inner product and norm,

1
1
(u,v)wm,m—/U(x)v(x)w(”’ﬁ)(w)dw, [ull s = (W,1) 5 0p)- ()
—1

The set of Jacobi polynomials forms a complete L2w(a7 s -orthogonal system, and

20HAH (k+a+ )T (k+B+1)
2k+a+B8+1)D(k+1)(k+a+B+1)

Let R;a’ﬁ ) (x), = € [0,00] be the Jacobi rational functions defined by (cf. [39])

1PN ) = i =

3)

(aMB) — (a76) x 1
B X =P I =0,1,2,...
k ( ) k (l‘ 1)? k 9y Ay )

where P,ga’ﬁ )() is the Jacobi polynomial of degree k defined on [—1,1]. From the
standard properties of Jacobi polynomials, one can easily deduce that

(k+a+ )R (2) — (k+ )R (2) = 2k +a+ f+2)(z+ 1) R (),

(@) \ _ kp(Ba) 1 (@), _ Lk+a+1)
R (@) = (CD)PRT(C), Ry (oo)—m,
q—1
(q— DT (k+a+B8+qg—f+1)
q
DRI = () (5 ) e “

(k+ﬁ+1)
D(k+a+B+DT(B+q—f+1)

(k+a+ DR (@) = b+ DRG) (@) = 2k +a+ B+2) @+ 1) R (@),

R0 @)~ BT @) = B (),

(k+a+B)R™ (z) = (k+ R (@)+ (k+ )RS (),
and

4R = (¢—1)! —(2g—f)
DRy Z 7(q—f—l)!($+1)
=0 (5)
(’f+04+/3+q—f+1) a+q F.B+a—F)
D(k+a+p+1) k—atf (@).

Next, let X( ”6)( ) =28 (z+1)7*#=2, Then for o, 3 > —1, the set of Jacobi
rational functions is a complete L? () 0, 00)-orthogonal system, i.e.,
XR
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| R @BD @@ =V

where

(8) _ I(k+a+1)I'(k+58+1)
T T Gktatfr)Dk+OI(ktatBr1)

(6)
We now turn to the Jacobi-Gauss interpolation. We denote by xSV j ) <j<
N, the nodes of the standard Jacobi-Gauss interpolation on the interval (—1,1). Their

corresponding Christoffel numbers are w](V ) < j < N. The nodes of the Jacobi
rational-Gauss interpolation on the interval (0, c0) are the zeros of REV +1)( ), which

(a.8)
we denote by xg_z ) , 0< 7 < N. Clearly xg% o8 ) 1+ é\[jﬁ) , and their corresponding

Christoffel numbers are wg{ ]\é)j = 2‘”713“ 5\/] ), 0<j<N.

Let N be any positive integer, and

Sn(0,00) = span{ R\ (), R (),..., R (2)}. 7

It follows that for any ¢ € San1(0,00),

00 1
1 +x
B8 —a—(F-2 _ _ B
/x (z+1) ¢(x)dw-2a+ﬂ+1/(1 2)°(1+1) ¢>(1 x)dx
0 —1
(0.9)
1+mN
TNy 8
2a+6+1 Z ) ®)
N,j

N
Z (@) ( (o) )
“RNGP\TRN )"
§=0
In order to present the approximation results precisely, we introduce the space
H" 5 (A),r€N, A= (0,00) with the following semi-norm and norm:
XRr '~ A

o0

; By L 1
o], o = QO a2, ol o, = Zr U} o )%

k=r
©)
For any r > 0, we define the space H" ,, 5 A(A) and its norm by space interpolation
XR »

as in [38, 39].
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Theorem 2.1 Forany v € H’"mﬂ) A(A), reNand < pu<r,
XRr 5

IPNas0 =0l @m 4, <CN*To] (10)

r,xgg’ﬂ),A'

A complete proof of the theorem and discussion on convergence are given in
[39].

3. Fully JR-GR-C method

This section presents a new collocation method for numerically solving the
one-dimensional hyperbolic equation of second order in semi-infinite domain:

Opu(z,t) = H(z,t,u(z,t), 0 u(x,t),0ppu(z,t)), (x,t)€[0,00)x[0,00), (11)
subject to the conditions (initial conditions and conditions at infinity)
u(z,0) =go(x), lim Ou(z,t)=g1(z), x€][0,00),
t—o00

(12)
u(0,t) = ga(t), xllngoax u(z,t) = g3(t), te0,00),

where H(z,t,u(x,t), 0y u(x,t),0pzul(z,t)), go(x), g1(x), g2(t) and g3(t) are given
functions.

In the proposed collocation method, two sets of Jacobi rational Gauss-Radau
points, with two different Jacobi rational parameters, are adopted for the spatial and
temporal discretizations. Now, we outline the main steps of the JR-GR-C method
for solving one-dimensional hyperbolic equation of second order. Let us assume the
approximate solution has the form

N M
u(,t) = Y3 ai RO @) R (1)

i=0 j=0
v (13)
=D aiife (w,t),
i=0 j=0
where
fé’j(x,t) _ R§a1761)(x)R§a2752)(t)_
We can approximate the spatial partial derivative O, u(z,t) as
N M
O, t) = 3D ai 0, (R (2)) RO (1)
=0 7=0 (14)

N M o
= Zzai,jf{J(xat)a

i=0 j=0
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where
ff’j(m,t) -9, (Rl(al,ﬁl)(x)) R;aZ’BQ)(t).
Similarly, the approximation of the time partial derivative dyu(x,t) is

dyu(z,t) ZZGHR(ahBl) )0, (R(Oézﬁz)(t))

=0 5=0

N M o
=Y > aiify’ (x.1),

i=0 j=0

(15)

where
3 (@,t) = RV ()9, R (1),

Furthermore, the approximations of the second spatial and temporal partial deriva-
tives (O u(x,t) and Oyu(x,t)) are

Opru(z,t) = Zza”fg (x,t),

1= 0] 0 (16)
Opu(z,t) = ZZa”f47j x,t),
=0 5=0
where
157 @,1) = Bea (R (@) B2 1),
and
f4’](x t) = R(Oé1,,31)( )0 (R (%ﬂz)(t))‘
Accordingally, adopting (13)-(16), enable one to write (11)-(12) in the form:
N M N
Zzai,jfij(x?t) ( Zzaz,]fo x,1) Zzaz,]ff] z,t),
=0 7=0 =0 7=0 =0 57=0
N M y (17)
S aisfi ),
i=0 j=0

(z,t) € [0,00) x [0,00),

where the functions ff’j (z,1), fé’j(x,t), fé’j (z,t) and fi’j(:n,t), are explicitly ex-
pressed by means of (5) at ¢ = 1, 2, with some calculations at the Jacobi rational
Gauss-Radau quadrature nodes.
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The approximations of the boundary conditions (12) may be obtained from

N M N
= aijfe? (x,0) = go(=),

i*Oj*O
+O¢2+1)
1 t R(alyﬂl (] —
e ZZ iy 1)
N M o (18)
=37 ai i f37(0,6) = galt),
i—Oj—O
+a1+1)
I t) R (¢ yLitaitD o
Jm u(z,t) ;%;%ZJ )i+ 90

In order to obtain the (M + 1) x (N + 1) unknowns namely, a; ; for the approximate
solution (13). The residual of (17) is set equal to zero at (N —1) x (M — 1) of JR-
GR-C points. In addition, the approximations of boundary conditions in (18) are
collocated at JR-GR-C points. Accordingly, we obtain (N —1) x (M — 1) algebraic
equations form

S5 o (oo ten) =H (2N a6, ).
=5 (19)
r=1,--,N—-1; s=1,---,M—1,

where

G =3 mahi (0 452),

= Oj 0
9 — 9, « 76) (a /3)
G =3 (foni tar?)
=0 5=0
. (a1,81) 4(a2,82)
T"S— ‘)j (e 76 « B
G* =2 iy (w53
i=0 j=0

Due to the conditions at ¢ = 0 and = = 0 in (12), we get an additional (N — 1) +
(M+1) algebraic equations

Zzamfoﬂ (@ ,0) =go(ag o), r=1,- N—1,
= 0] 0

Zzamfoﬂ (0,85272)) =ga(t%272)), s=0,---, M,
1=0 j5=0

(20)
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The spatial and temporal conditions at infinity provide (N — 1) + (M + 1) algebraic
equations

N M .
r 1
Zzai,jRgal’Bl)(‘ngaj\}%))w:91@5;}\}6}))» r=1,--,N—1,

!
i=0 j=0 Ji (a2 +1)
N M .
? ’ F<Z+Oél+1) s
ZZ“@JR&? 52)(tg§?\4€3§))m ng(tggﬁfﬁ)), s=0,---,M.
i=0 j=0 .

1)

This in turn, yields a system of (M + 1) x (N + 1) algebraic equations which may
be written as

9. ’ﬁ 75 7ﬂ 7/8
Zzamm (@i 802y = H () 62 e ot o),
=0 j=0

r=1, ,N-1,s=1,,M-1,

ZZaZ,Jfo” (@9 D,0) = go(awh?)), r=1,-- ,N—1,
1= O] 0

Zzaufo’ﬂ (0,65277) = ga(t5372)), 5=0,--+, M,

1=0 5=0
M T(j+az+1)
2
DY a R i) e R = gy, =1 N -1
et L J (e +1)
1=0 j7=0
N M .
o (042752 (0427/32) F(l +op+ 1) _ (a2,B2) _
ZZQZJR]' RMS ) Z'F(a1+1) 793(tR,M78 )’ 8707.“7M'
1=0 57=0
(22)
System (22) may also be written in the following matrix form
K11 -or  KLM+1 SR R ST VAR |
Kol ... K2 M+41 &1 .. S v+
= , (23)
KN1 - KNM+1 ENvt - ENM4t
KN4+1,1 -+ KN41,M+1 En+11 oo ENt1MA1

where
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ZOZOCL”fO’J(O t}??\fiz 1) =1, m=1,---,M+1
i= J
ZZamfo’J(azlg}vﬁlll,O), m=1, 1=2,.
= 0] 0
B B I(i+oq+1
Rim = ZOZOQZ’] 062 2)(’53«(31?\42 1)%7 I=N+1 m=1,--- M+1
1 ]
(e1,81) ¢, (a1,81) \T(j+az+1 _
ZZ()]Z()ai’jRial 1 (x}%oj}\f,ll—l)%’ m=M-+1 ,N,
9, b 1/8
E%E%QJQJWE%%%JgEQ 1) =2, N—=-1,m=2,---,
i=0j
(24)
and
pS3?) ), 1=1, m=1, M+1,
(@), m=1, 1=24 N,
§lm = gg(t};"j’f; D, I=N+1 m=1,--- M+1, (25)
D) mobe1 12N,
| Q, =2, . N—1,m=2,---,
with

: , I-1;m—1 A—1m—1 —1,m—1
Q:H(mgg}vil,)l,tf?\ffn GGG,

4. Numerical examples

To illustrate the effectiveness of the proposed method, two test examples are
considered. Comparison of the results obtained by various choices of Jacobi rational

parameters «vand 5 reveals that the new method is very accurate and efficient.

4.1. Bxponential solution
Consider the hyperbolic PDE
Opu = Oggu+u, (x,t) €[0,00) X [0,00),
subject to the conditions
w(0,8) =2, u(z,0)e" V37,
JEli_>r1010890u($,15) = tlggoax u(aj,t) =0.

The exact solution of Eq. (26) is given by

u(z,t) = e~ (20+V3), (x,t) € [0,00) x [0,00).

(26)

27

(28)
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Table 1.

Maximum absolute errors using JR-GR-C method for equation (26)

a1 — 51 Qo = 52 4 8 12 16 20
0 0 1.68x1072 921x10~% 756x107° 1.35x10°° 1.87x10°°
-1 -3 197x107% 1.95x107® 1.10x107* 2.61x10~* 3.91x107°

Table 2.

Absolute errors using JR-GR-C method for equation (26)

x t FE x t E xr t FE

0.1 01 6.98x1077][0.1 05 184x107 |01 1 236x10°"
0.2 419%x1077 | 0.2 6.22x 1079 | 0.2 1.89 x 107
0.3 2.58 %1077 [ 0.3 1.00x 1077 | 0.3 1.56 x 1077
0.4 6.88x 1078 | 0.4 2.890x 1078 | 0.4 1.82x 1077
0.5 1.72x 1077 | 0.5 7.67x10710 | 0.5 1.49x 107
0.6 2.20%x 1078 | 0.6 1.10x107% | 0.6 7.89 x 1078
0.7 1.20x 1077 | 0.7 7.12x1079 | 0.7 2.03x 108
0.8 1.11x 1077 | 0.8 456x1078 | 0.8 3.85x 1078
0.9 1.66 x107% | 0.9 7.04x1078 | 0.9 9.27x 1078

Maximum absolute errors of (26) subject to (27) are presented in Table 1, using the

JR-GR-C method with two special values of Jacobi rational parameters a1, 81, a2, 5.

It is clear that the special case a; = 51 = as = P2 = 0 (Legendre rational Gauss-
Radau collocation method) is more accurate than oy = 1 = ag = B2 = —% (the
first kind Chebyshev rational Gauss-Radau collocation method). Meanwhile, abso-
lute errors of problem (26) are presented in Table 2, for a; = 81 = as = o = 0 at
N = M = 20 with different values of (z,t).

Fig. 1 displays the absolute error of problem (26) with oy = 51 = as =82 =0
at N = M = 20. From Fig. 2, we see that the curves of the approximate and exact
solutions are coincided for different values of £. Meanwhile, the absolute error curve
of the approximate solution of problem (26) at ¢ = 50 using JR-GR-C method with
a1 =1 =ag=pFs=0and N = M = 20 is plotted in Fig. 3.

4.2. Solition solution

Finally, we consider the hyperbolic PDE

Dsptt = Oppt+u+ (cosh(2(2t + ) — 5)sech® (2t + ),  (z,t) € [0,00) x [0,00),
(29)
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Efxt] 1.:107%
5.5 1077

n
0.

1.0 g

Fig. 1 — The absolute error of problem (26), using JR-GR-C method with a; = 81 = a2 = 2 =0 at
N =M =20.

p

0.7

0.6

0.5

0.4

uamd d

0.3

0.2

0.1

Fig. 2 — Temporal directional curves of exact and approximate solutions of problem (26) where
ai =p1=az=pF2=0,and N =M =20.
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3.x107 -

25%107

2.x107 -

E(x,50)

15x107 F
1.x10°7

5.x1078 |

Fig. 3 — The absolute error of problem (26), using JR-GR-C method with a1 = 81 = g = S =0 at
N =M =20.

with the following conditions

u(0,t) =sech(2t), wu(z,0)=sech(z),
lim Oyu(x,t) = lim Oy u(z,t) =0. (30)
T—00 t—00

The solition solution of Eq. (29) is given by
u(z,t) =sech(2t+z), (x,t)€[0,00) x[0,00). (31)

Maximum absolute errors of problem (29) subject to (30) are presented in Table
3 using JR-GR-C method for different values of a1, 81, ao, S2, M and N. The
special case oy = 81 = as = 5 = 0 is more accurate than the other two cases.

We see the matching of exact and approximate solutions curves in Fig. 4, with
values of parameters listed in its caption. Meanwhile, we plot the absolute error curve
in ¢ direction in Fig. 5 at x = 100 using JR-GR-C method with a; = 1 = ag = 2 =
—2.and N = M = 20.
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Table 3.
Maximum absolute errors using JR-GR-C method for equation (29)
a1 = 61 Q9 = ,32 4 8 12 16 20
0 0 9.26x 1072 4.85x1073 5.16x107* 832x107° 6.75x10°°
: 0 9.75x107% 3.95x107% 4.95x107* 1.97x107* 1.28x107°
-1 —1  575x107' 3.15x1072 6.75x107% 2.70x10™? 6.23x107°

uamd U

Fig. 4 — Temporal directional curves of exact and approximate solutions of problem (29) at x =0, 0.5
and 1, where oy = 81 =g = B2 = —%, and N = M = 20.
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0.00003

0.000025

0.00002

0.000015

E(100,t)

0.00001

5.x107®

Fig. 5 — The absolute error of problem (29), using JR-GR-C method with a; = 1 = az = 2 = f%,
and N = M = 20.

5. Conclusion

We have proposed a new space-time collocation approach to spectrally solve
the hyperbolic PDEs of second order in a semi-infinite domain. In this approach,
the numerical solution was approximated by means of the Jacobi rational functions
and the problem with its boundary conditions are collocated at Jacobi rational Gauss-
Radau quadrature nodes. The mentioned problem was reduced into a system of alge-
braic equations in the expansion coefficients of the spectral solution.

The numerical results given in this paper demonstrated the good accuracy of
the proposed method. During two numerical applications, we explained that the
proposed method is simple and accurate. Indeed, while a limited number of Jacobi
rational collocation nodes are adopted, very accurate numerical results are obtained.
Finally, we can conclude that, the algorithm presented in this paper can be well suited
for handling general linear and nonlinear PDEs in semi-infinite domains.
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