Calculations using the mole concept

Objectives:

To introduce the concept of the mole as the unit of measurement for amounts of compounds ; atoms ; molecules and ions .

Introduction:

- - A mole of any substance : is the amount of the substance which contains a number of particles(atoms ; molecules ; etc.)equal to Carbon atoms in 12 grams of Carbon-12. it is the relative atomic mass expressed in grams.
e.g.

One mole of Carbon-12 is 12 grams .
One mole of Sodium- 23 is 23 grams.

- - The number of particles in one mole of any substance is equal to Avogadro's constant.
A mole of any substance contains the same number of particles :
Avogadro's constant (6.02×10^{23}) .
e.g.

1 mole of Carbon contains 6.02×1023 particles.
1 mole of Sodium contains $6.02 \times 10{ }^{23}$ particles .

- -The Molar Mass of a substance : is the mass of one mole ($\mathbf{M}_{\mathbf{r}}$). It is the relative mass in grams.
e.g.
M_{r} of $\mathrm{Na}=23$ grams
Mr_{r} of $\mathrm{NaOH}=23+16+1=40 \mathrm{~g}$.
No. of moles = mass in grams /molar mass

Example:

```
1-How many moles of \(\mathrm{CO}_{2}\) molecules are present in 11 g of
    \(\mathrm{CO}_{2}\) !
By formula :
Number of moles \(=\) no. of grams \(/\) mass of 1 mole .
                                    =11/44
                                    \(=0.25\) mole.
```

By dimentional analysis :

$$
1 \text { mole ------ 44g }
$$

$$
1 \mathrm{~mole} / 44 \mathrm{~g}=44 \mathrm{~g} / 44 \mathrm{~g}=1
$$

$$
\text { Unit factor }=1 \text { mole } / 44 \mathrm{~g}
$$

$$
11 \mathrm{~g} \times 1 \text { mole/44g = } 0.25 \text { mole. }
$$

2-What is the mass of 2 moles of Ethanol molecules? (Ethanol: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) .
\qquad
\qquad
\qquad
3 -How many atoms are there in 5 moles of Carbon?
\qquad
\qquad
\qquad

Moles for Gases :

Definition: One mole of molecules of any gas Occupies : 24 L at room temp. and pressure or 22.4 L at S.T.P. $\left(0^{\circ} \mathrm{C} \& 273 \mathrm{~K}\right)$.

No. of moles (at R.T.P) =volume/24L .

No. of moles (at S.T.P) =volume/22.4L .

Molar Solutions:

Is a solution of a substance where one litre contains one mole of the substance dissolved in it .

Molarity $=$ No. of moles $\times 1000 \mathrm{Cm} 3 /$ Vol. used(Cm3) =Mass/RAM x1000 Cm3/Vol. used(Cm3)

Exercises:

Complete:

1- A mole of Oxygen atom(O) containsatoms.
2- A mole of Oxygen molecule (O_{2}) contains molecules.
3- A mole of Oxygen molecule $\left(\mathrm{O}_{2}\right)$ contains atoms.
4- A mole of Oxygen atom (O) weights g.
5 - A mole of Oxygen molecule $\left(\mathrm{O}_{2}\right)$ weights g.

Change to the power of ten:

1- 520000
2- 0.000874
3- $(0.01)^{2}$
4- 2^{4}
Express as numbers without power of ten:
$1-9.6 \times 10^{5}$

2- 6×10^{-3}
$3-22 \times 10^{4}$
4- 10^{-6}
Convert:
1-5.31 moles of C to grams of C (R.A.M. $=12$).
$2-5$ moles of Cl^{2} to grams of $\mathrm{Cl}^{2}($ R.A.M. $=35.453)$.
$3-100 \mathrm{~g}$. of Fe to moles of $\mathrm{Fe}($ R.A.M. $=55.84)$.
$4-40 \mathrm{~g}$. of N 2 to moles of N2 (R.A.M. $=14$).
$5-30 \mathrm{ml} \mathrm{Hg}(\mathrm{d}=13.6 \mathrm{~g} / \mathrm{ml})$ to moles of $\mathrm{Hg}($ R.A.M. $=$ 200.59).

