Effect of Antiepileptic Drugs on Liver Enzymes Thesis

Submitted for partial fulfillment of master degree in

Department Of Clinical pharmacy

By

Raghda Roshdy Sayed Hussein

Bachelor degree in Pharmacy & Pharmaceutical Sciences
Beni-Suef University

Supervised by

Dr. Rasha Hassan Solimaan

Professor of Neurology, Faculty Of medicine

Beni- Suef University

Dr. Ahmed Mahmoud Abd el Halieem

Lecturer of Industerial Pharmacy, Faculty Of Pharmacy

Beni-Suef University

Faculty of pharmacy
Beni-Suef University
2012

بسم الله الرحمن الرحيم " وقل ربى زدنى علماً"

صدق الله العظيم

سورة طه الآيه ، ١١٤

Acknowledgement

First, and foremost, all thanks and gratitude to **GOD**, most gracious and most merciful.

I would like to express my deepest gratitude and sincere thanks to Dr.

Rasha Hassan Solimaan, Professor of Neurology, Faculty of medicine

Beni- Suef University, for her continuous guidance and valuable advice

for enriching this work. I appreciate her great support for me, which has

given me a powerful push helping this study to come to reality.

I am extremely grateful to Dr. Ahmed Mahmoud Abd El Halieem,
Lecturer of Industerial pharmacy, Faculty of pharmacy, Beni-Suef
University for his continuous guidance and valuable suggestions, saving
no effort or time to make this work better.

I would like to express my appreciation to Dr.Mohamed Emam Abd El Rehiem, Lecturer of Clinical Pharmacy, Faculty of pharmacy, Beni-Suef University, for his great cooperation, assistance and valuable efforts during the whole work without which, it wouldn't have been a reality.

I would like to send special thanks for Dr. Mona Hussein Tewfik,

Assistant lecturer of Neurology, Faculty of medicine Beni- Suef

University, for her great cooperation, assistance and valuable efforts

during the whole work without which, it wouldn't have been a reality

I am very proud of being Dr. **Heba Farouk Salem**, Assistant professor of Industerial Pharmacy, Faculty of Pharmacy, Beni Suef University, one the referees committee hoping to follow the same steps of her great scientific way.

I would like to send special thanks for Dr. Hatem EL Masry, Assistant Professor of Neurology, Faculty of medicine Beni- Suef University, for his great cooperation, revision and criticism of thesis

My heartfelt thanks and gratitude to all my professors and colleagues for their continuous support and encouragement

Thanks

Raghda Roshdy

To My Family

List of Abbreviations

AEDs: Antiepileptic drugs

AFB: Aflatoxin B

ALP: Alkaline phosphatase

ALT: Alanine aminotransferase

AMPA: Amino-3-hydroxy-5-methyl-isoxazole- 4-propionic acid

AST: Aspartate aminotransferase

AUC: Area under curve

BZDs: Benzodiazepines

CBZ: Carbamazepine

CI: Confidence interval

CLD: Chronic liver disease

CNS: Central Nervous System

CoA: Coenzyme A

CYP: Cytochrome P450 system

DILIs: Drug induced liver injury

EHBA: Extrahepatic Biliary Atresia

EEG: Electro-encephalogram

FBM: Felbamate

FDA: Food &Drug Administration

GABA: Gamma amino-butyric acid

GAT: GABA active transporter

GBP: Gabapentin

GGT: Gamma-glutamyl transferase

INR: International normalized ratio

LEV: Levetiracetam

LFTs: Liver function tests

LTG: Lamotrigine

MHD: Monohydroxy derivate

NMDA: N-methyl-D-aspartate

NASH: Non alcoholic steato hepatitis

NMR: Normal magnetic resonance

OXC: Oxcarbazepine

PB: Phenobarbital

PHT: Phenytoin

PRM: Primidone

SGOT: Serum glutamate oxalo-acetic transaminase

SGPT: Serum glutamic pyruvate transaminase

TGB: Tiagabine

TPM: topiramate

UGTs: Uridine glucuronyl transferases

Vd: Volume of distribution

VGB: Vigabatrin

VOD: Veno-occlusive disease

VPA: Valproic acid

ZNS: Zonisam

Abstract

Evidences reveal that antiepileptic drugs can alter liver enzymes leading to significant hepatotoxicity.

Aim: To study the effect of antiepileptic drugs on liver enzymes as a side effect.

Subjects and methods: This study was conducted on 49 patients with epilepsy (aged between 4 and 55 years) admitted to the neurology outpatient clinic at Beni Sueif University between February 2010 and June 2011. The patients were separated as group I (16 patients), treated with carbamazepine, 200-1200 mg /day; group II (16 patients), treated with sodium valproate, 200-800 mg/ day; and group III (17 patients), treated with phenytoin, 200-600 mg/ day. Serum liver enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum level of antiepileptic drug were determined.

Results: Our results judged the presence of a statistically significant positive correlation between the dose/kg of Carbamazepine and the serum level of the drug, a statistically significant positive correlation between the dose/kg of SodiumValproate and AST and a statistically significant negative correlation between the duration of administration of SodiumValproate and AST. There is also a statistically significant negative correlation between the duration of administration of Carbamazepine and AST&ALP.

Conclusion: The need for obtaining baseline liver function tests is essential before starting antiepileptic therapy and regular monitoring of serum aminotransferase values that had any of the risk factors for liver damage during antiepileptic therapy. Precautions should be taken when using antiepileptic drugs in epileptic patients with pre-existing hepatic disorders, in patients using potentially hepatotoxic drugs or if signs or symptoms of hepatic impairment appear. Because little long-term hepatic follow-up is available with antiepileptic treatment, controlled studies in larger samples should be carried out to reveal the frequency and the risk factors of serious hepatotoxicity.

Key words: Antiepileptic drugs, liver enzymes, serum level and duration of administration

LIST OF TABLES

Table	Page
Table (1): Proposed mechanism of antiepileptics' action	8
Table (2): Definitions of some relevant pharmacokinetic terminology	16
Table (3): Antiepileptic drugs and absorption	18
Table (4): Antiepileptic drugs and Distribution	23
Table (5): Clinical Significance of Liver Function Tests	38
Table (6): Mean (SD) of age in study groups	83
Table (7): Gender distribution in study groups	84
Table (8): Duration of the epileptic fit in study groups	85
Table (9): Frequency of epileptic fits per week in study groups	87
Table (10): The daily dose of the drug in study groups	88
Table (11): The duration of drug administration in study groups	90
Table (12): The serum level of the antiepileptic drugs in study groups	92
Table (13): The serum level of liver enzymes in group I	93
Table (14): The serum level of liver enzymes in group II	94
Table (15): The serum level of liver enzymes in group III	95
Table (16): Comparison between study groups as regards the mean values of the enzymes	ne liver 96
Table (17): Comparison between group I and group II as regards the mean value the liver enzymes	nes of 98
Table (18): Comparison between group II and group III as regards the mean very of the liver enzymes	alues 99
Table (19): Comparison between group II and group III as regards the mean value liver enzymes	lues of 100
Table (20): The serum level of the antiepileptic drugs in the study groups	102
Table (21): Correlation between the duration of drug administration and liver enzymes	103

Table (22): Correlation between the duration of drug administration and serum le	evel
of drug	107
Table (23): Correlation between the serum level of the drugs and liver enzymes	108
Table (24): Correlation between dose/Kg and liver enzymes drug	108
Table (25): Correlation between dose/Kg, liver enzymes and the serum level of	
drug	110

List of Figures

Figure Pa	age
Figure 1: Pharmacokinetic processes.	15
Figure 2: Anatomy of the liver.	34
Figure 3: Schematic of the classic hexagonal liver lobule	35
Figure 4: Liver injury and its patterens	48
Figure 5: Drug induced hepatotoxicity	52
Figure 6: Diagnosis of Drug-Related Hepatotoxicity.	56
Figure 7: Comparison between the three study groups as regards the mean vage in years.	alues of
Figure 8: Comparison between the three study groups as regards the number of and females in each group.	of males
Figure 9: The daily dose of the drug in study groups.	86
Figure 10: The duration of drug administration in years in the study groups.	87
Figure 11: The duration of fits in minutes in the study groups	89
Figure 12: The frequency of fits per week in the study groups	90
Figure 13: The serum level of the antiepileptic drugs in study 92	groups
Figure 14: The percentage of normal and abnormal liver enzymes in group I	93
Figure 15: The percentage of normal and abnormal liver enzymes in group II	94
Figure 16: The percentage of normal and abnormal liver enzymes in group III	95
Figure 17: Comparison between study groups as regards the mean values of tenzymes	the liver

Figure 18: Comparison between group I and group II as regards the mean values of
the liver enzymes 98
Figure 19: Comparison between group II and group III as regards the mean values of the liver enzymes 99
Figure 20: Comparison between group I and group III as regards the mean values of the liver enzymes 101
Figure 21: Comparison between study groups as regards the mean values of the serum level of antiepileptic drug 102
Figure 22: Correlation between the duration of drug administration and AST in group 104
Figure 23: Correlation between the duration of drug administration in years and AST in group II 105
Figure 24: Correlation between the duration of drug administration in years and ALP in group I 106
Figure 25: Correlation between AST and dose/Kg in group II. 109
Figure 26: Correlation between The serum level of drug and dose/Kg in group I.110

S.No.	Topics	Page No.
1.	Introduction	1
2.	Literature Review	3
3.	Aim of Work	78
4.	Methodology	79
5.	Results	83
6.	Discussion	111
7.	Summary & Conclusion	121
8.	Recommendation	128
9.	References	129
10.	Appendix	152
11.	Arabic Summary	153