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The growing interest in utilizing energy restric-
tion without malnutrition as an approach for 
cancer therapy and prevention is due to the 
promising results from animal and human trials. 
The principle of targeting energy metabolism as 
an antitumor strategy relies on the differences in 
the ways that normal and transformed cells gen-
erate energy. Unlike non-neoplastic cells, trans-
formed cells exhibit a high demand for glucose 
with very limited flexibility for modifying their 
means of ATP generation in response to chang-
ing environmental conditions and energy source 
availability. Therefore, cancer cells are exqui-
sitely vulnerable to energy restriction. However, 
it is extremely difficult to implement chronic 
energy restriction through actual dietary caloric 
restriction as an antitumor strategy in humans.

Targeting cancer metabolism by energy 
restriction

In the November 2010 issue of Future Oncology, 
we reviewed the development of small molecule 
agents that function as energy-restriction mimetic 
agents (ERMAs) and target various aspects of 
energy metabolism [1]. Here, we provide updates 
regarding energy-restriction research to date 
and a number of the ERMAs discussed in our 
previous editorial. Additionally, we discuss 
metabolic enzymes and signaling pathways that 
have recently been reported to be modulated by 
energy restriction.

Research has shown that energy restriction 
suppresses the clonal expansion of transformed 
cells by limiting survival factors required for the 
regulation of cell proliferation, cell cycle control 
and angiogenesis [2]. Many newly developed 

ERMAs induce cellular responses that mimic 
actual dietary energy restriction.

AMPK activators: an update
The induction of cell cycle senescence by agents 
that activate AMPK has been studied extensively 
in the context of tumor cells growth inhibition. 
By activating AMPK, these agents mimic a 
low intracellular energy state and inhibit the 
proliferation of cancer cells in vitro. AMPK 
activation suppresses cancer cell growth either by 
inhibiting mTOR-dependent translation initiation 
[3] or by phosphorylating and inactivating acetyl-
CoA carboxylase (ACC). ACC inactivation is 
accompanied by the suppression of fatty acid 
synthase, which leads to growth inhibition by 
blocking lipogenesis [4]. In vivo, treatment of 
diabetic patients with metformin, a widely used 
antidiabetic agent and an AMPK activator, reduces 
cancer-related mortality in this patient population 
[5]. This effect of metformin is independent of 
blood glucose levels, since other antidiabetic 
agents failed to show an anticancer effect [6]. At the 
molecular level, metformin inhibits mitochondrial 
complex I in the liver, thereby interfering with 
ATP production and results in a low ATP state 
and energy depletion that activates AMPK [7]. 
Recent studies have explored metformin’s ability 
to target trastuzumab-resistant breast cancer 
cells via inhibition of erbB2/IGF-1 receptor 
interactions [8]. Additionally, an epidemiological 
study of the long-term use of metformin found 
that such use was associated with a decreased risk 
of ovarian cancer [9].

Aminoimidazole carboxamide ribonucleotide 
(AICAR), another widely used AMPK activator, 
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has been extensively studied in many cancer types 
[10]. In addition to activating AMPK, AICAR 
increases S-phase cell-cycle arrest and apoptosis, 
thereby suppressing cell proliferation [10].

Resveratrol: modulation of the cellular 
‘energy-sensing’ machinery by an ERMA
Resveratrol was one of the earliest identified 
ERMAs. It modulates tumor cell proliferation 
and protein translation via Sirtuin type 1 
(SIRT1)-dependent activation of AMPK [11]. 
Resveratrol activates AMPK secondary to 
inducing SIRT1 expression via elevation of the 
cellular NAD+/NADH ratio. Studies utilizing 
melanoma cells found that AMPK-mediated 
growth inhibition was achieved via inactivation of 
the RAF–MEK–ERK mitogen-activated protein 
kinase pathway [10].

Thiazolidinedione-derived ERMAs as a 
‘multi-pronged’ approach to target 
tumor energy metabolism
Research has shown that the thiazolidinedione 
(TZD) peroxisome proliferator-activated receptor 
(PPAR) agonists, troglitazone and ciglitazone, are 
able to mimic glucose starvation and elicit cellular 
responses characteristic of energy restriction 
independent of the activation of PPARg [12]. 
Starvation-associated responses induced by 
the TZD derivatives include reduction of 
the glycolytic rates and intracellular levels of 
NADH and lactate, transient induction of the 
silent information regulator 1 gene, activation of 
AMPK and endoplasmic reticulum stress. The 
interplay among these responses likely culminates 
in autophagy and apoptosis. Ciglitazone was 
used as a scaffold to develop a novel ERMA, 
OSU-CG12 (CG-12), which has shown increased 
antiproliferative potency. In addition to inducing 
the starvation responses listed above, CG-12 is 
able to induce apoptosis in cancer cells through 
epigenetic activation of Krueppel-like factor 6 
(KLF6) tumor suppressor gene expression [13].

When OSU-CG5 (CG-5), a newly developed 
TZD-derived ERMA, is combined with glucose 
deprivation, the expression levels of a number 
of DNA methylation-silenced tumor suppressor 
genes are upregulated, and the expression 
levels of tumor/invasion-promoting genes are 
downregulated. Upregulated genes included 
GADD45a, GADD45b, IGFBP3, LAMB3, 
BASP1, GPX3 and GSTP1, and downregulated 
genes included CD44, S100A4 and TACSTD2 
[14]. The epigenetic effects of CG-5 are mediated 
through transcriptional repression of DNA 
methyltransferase 1, associated with reduced 

expression of Sp1 and E2F1. These data reveal 
the epigenetic effect of ERMAs on DNA 
methylation-silenced tumor suppressor genes.

“...energy restriction suppresses the 
clonal expansion of transformed cells by 
limiting survival factors required for the 

regulation of cell proliferation, cell cycle 
control and angiogenesis.”

By better mimicking actual glucose starvation, 
it would seem that an ERMA, such as CG-12 or 
CG-5, that is able to induce multiple components 
of the starvation-associated response would offer 
advantages over an ERMA that targets only one 
component of this response. Initial studies show 
this to be the case in vitro, with CG-12 exhibiting 
higher antiproliferative activity than resveratrol 
in the human prostate cancer LNCaP and the 
human breast cancer MCF-7 cell lines [12]. 
However, further studies are needed to compare 
their in vivo tumor growth suppressive activities 
and better delineate the full mechanism of action 
of CG-12 and CG-5. Based on the research thus 
far, these novel ERMAs and their derivatives offer 
tremendous potential as chemopreventive and/or 
chemotherapeutic agents.

Hexokinase II inhibitors: an update
Hexokinase II (HK II), the first enzyme in 
glycolysis, is able to bolster the energy supply of 
malignant cells and protect cancer cells against 
apoptosis through direct interaction with 
mitochondrial voltage dependent anion channel 1 
(VDAC1) [15]. Inhibitors of mitochondrial-bound 
HK II such as lonidamine, sensitize cancer 
cells to apoptosis by facilitating the docking of 
the pro-apoptotic protein Bax on VDAC1 [16]. 
Furthermore, lonidamine is reported to inhibit 
colon fibrosarcoma cell migration and invasion 
[17] and it counteracts multidrug resistance in 
human breast and ovarian tumor cells when 
combined with paclitaxel [18]. Clinical trials have 
shown that the combination of lonidamine with 
other chemotherapeutic agents is active against 
advanced non-small-cell lung cancer and ovarian 
cancer [19]. The pyruvate analog 3-bromopyruvate 
is another HK II inhibitor and an alkylating agent. 
It has demonstrated suppressive activities against 
hepatocellular carcinoma [20], colon cancer [21] 
and breast cancer [22], both in vitro and in vivo.

Opportunities & challenges
The use of ERMAs as a cancer therapy is 
limited by our incomplete knowledge of the 
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regulation of metabolic pathways that facilitate 
cell proliferation [23]. Additionally, cancer cells 
exhibit heterogeneous metabolic alterations as 
a result of the tumor microenvironment, which 
affects tumor vasculature and results in gradients 
of nutrients, oxygen and pH [24]. Despite 
these limitations, agents that target tumor cell 
metabolism have been used successfully in human 
cancer therapy. For example, antimetabolites 
such as nucleoside analogues, hydroxyurea and 
antifolate drugs were among the earliest agents 
that targeted tumor metabolism and have been 
used extensively in the treatment of diverse 
human cancers. Additionally, l-asparaginase 
and analogous agents have been successfully 
used to treat acute lymphoblastic leukemia and 
related lymphomas. These agents were designed 
to specifically reduce levels of glutamine, a crucial 
nutrient for acute lymphoblastic leukemia and 
many cancer cells [25].

“Strategies that take advantage of the 
high rate of glucose uptake by tumor 

cells and reliance on glycolysis are being 
developed as another means of 

metabolic targeting.”

Strategies that take advantage of the high rate 
of glucose uptake by tumor cells and reliance 
on glycolysis are being developed as another 
means of metabolic targeting. For example, 
b-d-glucosylisophosphoramide mustard is an 
alkylating agent in which isophosphoramide 

mustard is covalently linked to b-d-glucose. 
Linking the isophosphoramide mustard 
to b-d-glucose enables glufosfamide to be 
selectively targeted to tumor sites [26].

The major challenge in the development of 
anticancer drugs that target cell metabolism is 
the potential toxicity to normal cells. However, 
the redundant metabolic pathways in normal 
cells and over-reliance of cancer cells on specific 
metabolic pathways can provide a safety 
threshold [24]. Genetic changes that result in the 
stringent reliance of cancer cells on few specific 
metabolic pathways (like aerobic glycolysis) 
could potentially be used as targets for future 
chemotherapeutic drug development. Although 
the use of ERMAs as chemotherapeutic agents 
is still in its infancy, as the intricacies of cancer 
energy metabolism are further elucidated, we 
foresee this field flourishing and becoming a 
mainstay in the fight against cancer.
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