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Abstract
In this paper, the Chebyshev Gauss-Lobatto pseudospectral scheme is investigated in
spatial directions for solving one-dimensional, coupled, and two-dimensional
parabolic partial differential equations with time delays. For the one-dimensional
problem, the spatial integration is discretized by the Chebyshev pseudospectral
scheme with Gauss-Lobatto quadrature nodes to provide a delay system of ordinary
differential equations. The time integration of the reduced system in temporal
direction is implemented by the continuous Runge-Kutta scheme. In addition, the
present algorithm is extended to solve the coupled time delay parabolic equations.
We also develop an efficient numerical algorithm based on the Chebyshev
pseudospectral algorithm to obtain the two spatial variables in solving the
two-dimensional time delay parabolic equations. This algorithm possesses spectral
accuracy in the spatial directions. The obtained numerical results show the
effectiveness and highly accuracy of the present algorithms for solving
one-dimensional and two-dimensional partial differential equations.

Keywords: two-dimensional parabolic differential equations; delay system of
differential equation; pseudospectral scheme; Chebyshev Gauss-Lobatto quadrature;
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1 Introduction
In recent years there has been a high level of interest in employing spectral methods for
numerically solving many types of integral and differential equations, due to their high
accuracy and ease of applying them for finite and infinite domains [–]. The spectral col-
location method is a specific type of spectral methods that is more applicable and widely
used to solve most types of differential equations [–].

In biology, physics, engineering, and computer design, many models can be attributed
to time-delay partial differential equations (PDEs) (see, e.g., [–]). In the last few years,
various analytical and numerical methods have been proposed for solving delay integral
and PDEs (see, e.g., [–]). The Legendre pseudospectral algorithm [] was imple-
mented successfully to provide very accurate solutions of parabolic integro-differential
equations in bounded and unbounded intervals. Kaushik et al. [] proposed the uniform
difference scheme for time-delayed PDEs. In the same direction, the singularly perturbed
delay PDEs have been solved by an operator finite difference scheme []. The Chebyshev
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wavelet method was improved in [] to obtain numerical solutions of time-varying delay
systems.

Recently, Rashidinia et al. [] proposed an efficient numerical technique for solving
parabolic convection-diffusion problems, in which a finite difference scheme was used in
the temporal direction to reduce the problem to a system of ordinary differential equa-
tions (ODEs) in a spatial direction, and the Sinc-Galerkin scheme was then used to solve
this system. The Bessel collocation approximation was investigated in [] to reduce the
parabolic convection-diffusion equation to a system of algebraic equations. Moreover,
Bhrawy et al. [] proposed the Jacobi pseudospectral scheme for numerically solving the
time-delayed Burgers’ equations and the same method was applied successfully for the
generalized Fitzhugh-Nagumo equation in []; additionally, the Jacobi Gauss-Lobatto
pseudospectral scheme has been proposed and extended to solve the complex general-
ized Zakharov system []. Ashyralyev and Agirseven [] presented a difference scheme
for the delay parabolic differential equation and studied the convergence of this scheme.
Furthermore, Tian [] discussed the asymptotic stability and convergence of three differ-
ence schemes which were applied to solve delay parabolic PDEs. More recently, the au-
thors of [] and [] proposed a linearized compact multi-splitting method and compact
difference method combined with an extrapolation scheme to solve convection-reaction-
diffusion and neutral parabolic PDEs with delay, respectively.

As pointed out above, most researchers used finite difference schemes for the spatial
discretizations of time-delay partial differential equations to get a system of ODEs with
time delays. However, the accuracy of such methods is poor in the spatial directions. This
motivated our interest to investigate the Chebyshev pseudospectral method for spatial
discretizations for the initial-boundary value problems with time delays in one and two
dimensions. This method is known for its ease in implementation along with the high
accuracy and exponential convergence that can be achieved.

The main aim of this article is to investigate the Chebyshev pseudospectral scheme
to solve the one-dimensional parabolic PDEs. We focus primarily on implementing this
scheme in spatial independent variable. The spatial direction is collocated at (N – ) col-
location points of the Chebyshev Gauss-Lobatto quadrature nodes. This scheme has the
advantage of reducing the one-dimensional parabolic PDEs into a system of (N – ) ODEs
with time delays in the time direction, that can be solved by continuous Runge-Kutta (RK)
method.

We also extend the application of this algorithm to solve the coupled time delay parabolic
equations at (N – ) collocation nodes, which provides a system of (N – ) ODEs with
time delays. Moreover, this algorithm is developed to solve the two-dimensional time delay
parabolic equations, in which the two spatial variables are collocated at (N – ) × (M – )
Chebyshev Gauss-Lobatto quadrature nodes. This provides a system of (N – ) × (M – )
ODEs with time delays. Finally, several numerical simulations are given to confirm the
high accuracy of the proposed algorithm.

This paper is outlined as follows: In the next section, we present some properties
of Chebyshev polynomials. The Chebyshev pseudospectral approximation in spatial di-
rections is obtained for solving the one-dimensional time-dependent PDEs, coupled
parabolic PDEs, and two-dimensional time-dependent parabolic PDEs with time delays.
In Section , some illustrative numerical experiments are given and some comparisons are
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made between our method and other methods. The paper ends with some conclusions and
observations in Section .

2 Chebyshev polynomials interpolation
In this section, we present some properties of Chebyshev polynomials that will be used
to construct the method. The Chebyshev polynomials are determined from the following
recurrence formula:

Ti+(x) = xTi(x) – Ti–(x), i = , , . . . , x ∈ [–, ],

where T(x) =  and T(x) = x. Also

Tk(–) = (–)k , Tk() = . ()

Let w(x) = ( – x)– 
 , and I ≡ [–, ], then we define the space L

w(I)-orthogonal system,
i.e.,

∫
I
Tk(x)Tl(x)w(x) dx = hkδk,l, ()

where

hk =
ck


π , c = , ck = , k ≥ . ()

In the forthcoming discussions, we denote the norm and semi-norm of the weighted
Sobolev space Hr

w(I) by ‖υ‖r,w,I and |υ|r,w,I, respectively. In particular, L
w(I) = H

w(I) and
‖υ‖w,I = ‖υ‖,w,I.

Let ζN ,j,  ≤ j ≤ N , be the nodes of the Chebyshev-Gauss interpolation over I. Their
corresponding Christoffel numbers are �N ,j,  ≤ j ≤ N , and

�N ,j =
π

γjN
, j = , , . . . , N ,

where γ = γN =  and γ for j = , , . . . , N – . Let SN be the space of all polynomials of
degree ≤ N , then for any φ ∈ SN–(, L),

∫ 

–
ω(x)φ(x) dx =

N∑
j=

�N ,jφ(ζN ,j). ()

Let us define the following discrete inner product and norm:

(u, v)w,N =
N∑

j=

u(ζN ,j)v(ζN ,j)�N ,j, ‖u‖w,N =
√

(u, u)w,N . ()

From [], the following relation holds:

‖u‖w ≤ ‖u‖N ,w ≤ √
‖u‖w, ∀u ∈ SN . ()
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Theorem . Let u(x) ∈ Hk(I) Sobolev space and uN (x) =
∑N

i= aiTi(x) be the best approx-
imation polynomial of u(x) in L

w-norm. Thus, the truncation error is

∥∥u(x) – uN (x)
∥∥

L
w(I) ≤ CN–k∥∥u(x)

∥∥
Hk (I), ()

where C is a positive constant, which is dependent on the selected norm and independent
of u(x) and N (for a proof see []).

3 Chebyshev pseudospectral scheme
We propose a pseudospectral algorithm based on Chebyshev polynomials to integrate the
spatial variable for the ( + ) parabolic PDEs with discrete time delay. The problem is then
transformed into a system of ODEs with time delay. The algorithm is extended to treat the
coupled parabolic PDEs and ( + ) parabolic PDEs with time delay. The spatial variables
are integrated based on the Chebyshev pseudospectral scheme, in which we use the Gauss-
Lobatto interpolation nodes, to convert the problems to those of ODEs with time delay.
The continuous RK scheme is employed to solve the resulting systems of ODEs.

3.1 (1 + 1) Parabolic PDEs with time delay
Consider the ( + ) parabolic PDEs with time delay of the form

∂u(x, t)
∂t

= η
∂u(x, t)

∂x + λu(x, t – τ ) + λu(x, t – τ ) + f (x, t), (x, t) ∈ I × T, ()

with the boundary conditions

u(–, t) = c(t), u(, t) = c(t), t ∈ T, ()

and the initial state

u(x, t) = c(x, t), (x, t) ∈ I × [–τ , ], ()

where I ≡ [–, ], T ≡ (, T], and η and τ >  are the diffusion coefficient and delay param-
eter.

The polynomial approximation of degree N to u(x, t) may be expressed in terms of the
orthogonal family {Ti(x)} in the form

u(x, t) =
N∑

i=

ai(t)Ti(x). ()

It follows from () and () that

ai(t) =

hi

∫ 

–
u(x, t)w(x)Ti(x) dx. ()

It can be seen directly from () that aj(t) may be expanded in the form

ai(t) =

hi

N∑
j=

Ti(ζN ,j)�N ,ju(ζN ,j, t), ()
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where ζN ,j ( ≤ j ≤ N ) are the zeros and �N ,j ( ≤ j ≤ N ) are the corresponding quadrature
weights.

We can further rewrite () as

u(x, t) =
N∑

j=

( N∑
i=


hi

Ti(ζN ,j)Ti(x)�N ,j

)
u(ζN ,j, t). ()

The first-order spatial partial derivative at a specific collocation node ζN ,n can be obtained
from () as

ux(ζN ,n, t) =
N∑

i=

μniu(ζN ,i, t),  ≤ n ≤ N , ()

where

μni =
N∑

j=


hj

Tj(ζN ,i)∂x
(
Tj(ζN ,n)

)
�N ,i. ()

This result can be extended to compute the second-order spatial partial derivative at a
specific collocation node ζN ,n as

uxx(ζN ,n, t) =
N∑

i=

γniu(ζN ,i, t),  ≤ n ≤ N , ()

where

γni =
N∑

j=


hj

Tj(ζN ,i)∂xx
(
Tj(ζN ,n)

)
�N ,i. ()

In the context of Chebyshev pseudospectral approximation, putting () and () in ()
gives

u̇n(t) = η

N∑
i=

γniui(t) + λun(t – τ ) + λu
n(t – τ ) + fn(t),

 ≤ n ≤ N – , ()

where

uk(t) = u(ζN ,k , t), uk(t – τ ) = u(ζN ,k , –τ ),

fk(t) = f (ζN ,k , t),  ≤ k ≤ N – .

The boundary conditions () are satisfied exactly at the two collocation points ζN , = –
and ζN ,N = . Furthermore, the preceding equation provides a system of (N – ) ODEs with
discrete time delay τ , namely

u̇n(t) = η

N–∑
i=

γniui(t) + ρn(t) + λun(t – τ ) + λu
n(t – τ ) + fn(t), ()
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subject to

un(t) = c(ζN ,n, t), n = , . . . , N – , t ∈ [–τ , ], ()

where

ρn(t) = γnc(t) + γnN c(t).

Finally, the system ()-() can be written in a matrix form as

U̇(t) = G
(
t, u(t), u(t – τ )

)
,

U() = c, t ∈ [–τ , ],
()

where

U̇(t) =
[
u̇(t), u̇(t), . . . , u̇N–(t)

]T ,

c =
[
c(ζN ,), c(ζN ,), . . . , c(ζN ,N–)

]T ,

G
(
t, u(t), u(t – τ )

)
=

[
g

(
t, u(t), u(t – τ )

)
, . . . , gN–

(
t, u(t), u(t – τ )

)]T ,

and

gi
(
t, u(t), u(t – τ )

)
= η

N–∑
j=

γijuj(t) + ρi(t) + λui(t – τ ) + λu
i (t – τ ) + fi(t).

The previous system of first-order ODEs with time delay () is integrated by the con-
tinuous RK scheme [, ].

3.2 Coupled (1 + 1) parabolic PDEs with time delay
The main objective of this section is to develop the Chebyshev pseudospectral method to
numerically solve the coupled parabolic PDEs with discrete time delay. This converts the
following coupled parabolic PDEs with time delay into system of ODEs with time delay:

∂u(x,t)
∂t = η

∂u(x,t)
∂x + u(x, t)( + λu(x, t – τ ) + κv(x, t – τ )) + r(x, t),

∂v(x,t)
∂t = η

∂v(x,t)
∂x + v(x, t)( + λu(x, t – τ ) + κv(x, t – τ )) + s(x, t),

(x, t) ∈ I × T,

⎫⎪⎪⎬
⎪⎪⎭

()

subject to

u(–, t) = c(t), u(, t) = c(t),

v(–, t) = c(t), v(, t) = c(t), t ∈ T,
()

and initial data

u(x, t) = c(x, t), v(x, t) = c(x, t), (x, t) ∈ I × [–τ , ]. ()
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Now, we outline the main step of the Chebyshev pseudospectral algorithm for the coupled
parabolic PDEs with time delay. Let us expand the approximate solutions as

u(x, t) =
∑N

i= ai(t)Ti(x),
v(x, t) =

∑N
i= bi(t)Ti(x).

}
()

The expansion coefficients {aj(t) and bj(t)}, can be described in terms of the solution at
the Chebyshev Gauss-Lobatto quadrature points {ζN ,j}, j = , , . . . , N , as

ai(t) = 
hi

∑N
j= Ti(ζN ,j)�N ,ju(ζN ,j, t),

bi(t) = 
hi

∑N
j= Ti(ζN ,j)�N ,jv(ζN ,j, t).

}
()

Therefore, the approximate solutions () can be expressed in terms of Chebyshev poly-
nomials, at the Chebyshev Gauss-Lobatto quadrature points, in the form

u(x, t) =
∑N

j=(
∑N

i=

hi

Ti(ζN ,j)Ti(x)�N ,j)u(ζN ,j, t),
v(x, t) =

∑N
j=(

∑N
i=


hi

Ti(ζN ,j)Ti(x)�N ,j)v(ζN ,j, t).

}
()

The first-order partial derivative with respect to x for the solutions (), at a specific col-
location node ζN ,n can be written as

ux(ζN ,i, t) =
∑N

j= μiju(ζN ,j, t),
vx(ζN ,i, t) =

∑N
j= μijv(ζN ,j, t), i = , , . . . , N .

}
()

According to the previous step, the second-order spatial derivatives of the approximate
solutions () are

uxx(ζN ,i, t) =
∑N

j= γiju(ζN ,j, t),
vxx(ζN ,i, t) =

∑N
j= γijv(ζN ,j, t), i = , , . . . , N .

}
()

Applying the Chebyshev pseudospectral approximation [, ] for the coupled parabolic
PDEs with discrete time delay (), at the nodes of Chebyshev-Gauss-Lobatto quadrature.
Thanks to ()-(), the coupled equations () may be written in the form

u̇n(t) = η
∑N

i= γniui(t) + un(t)( + λun(t – τ ) + κvn(t – τ )) + rn(t),
v̇n(t) = η

∑N
i= γnivi(t) + vn(t)( + λun(t – τ ) + κvn(t – τ )) + sn(t),

}
()

where

uk(t) = u(ζN ,k , t), vk(t) = v(ζN ,k , t),

rk(t) = r(ζN ,k , t), sk(t) = s(ζN ,k , t), k = , . . . , N – , n = , . . . , N – .

The boundary conditions () have been satisfied exactly at the two collocation points
ζN , = – and ζN ,N = .

Let us denote

ρn(t) = γnc(t) + γnN c(t), σn(t) = γnc(t) + γnN c(t),
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then the coupled parabolic PDEs () with the set of boundary conditions () are trans-
formed into the following ODEs with time delay:

u̇n(t) = η
∑N–

i= γniui(t) + un(t)( + λun(t – τ ) + κvn(t – τ )) + rn(t) + ηρn(t),
v̇n(t) = η

∑N–
i= γnivi(t) + vn(t)( + λun(t – τ ) + κvn(t – τ )) + sn(t) + ησn(t),

}
()

and from () we get the initial values

un(t) = c(ζN ,n, t),
vn(t) = c(ζN ,n, t), n = , . . . , N – , t ∈ [–τ , ].

}
()

The matrix formulation of the previous systems is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u̇(t)
u̇(t)

...
u̇N–(t)

v̇(t)
v̇(t)

...
v̇N–(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η
∑N

i= γiui(t) + u(t)( + λu(t – τ ) + κv(t – τ )) + r(t) + ηρ(t)
η

∑N
i= γiui(t) + u(t)( + λu(t – τ ) + κv(t – τ )) + r(t) + ηρ(t)

· · ·
· · ·
· · ·

η
∑N

i= γN–iui(t) + uN–(t)( + λuN–(t – τ ) + κvN–(t – τ )) + rN–(t) + ηρN–(t)
η

∑N
i= γivi(t) + v(t)( + λu(t – τ ) + κv(t – τ )) + s(t) + ησ(t)

η
∑N

i= γivi(t) + v(t)( + λu(t – τ ) + κv(t – τ )) + s(t)ησ(t)
· · ·
· · ·
· · ·

η
∑N

i= γN–ivi(t) + vN–(t)( + λuN–(t – τ ) + κvN–(t – τ )) + sN–(t)ησN–(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

()

subject to the vector of initials

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(t)
u(t)

...
uN–(t)

v(t)
v(t)

...
vN–(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(ζN ,, t)
c(ζN ,, t)

...
c(ζN ,N–, t)

c(ζN ,, t)
c(ζN ,, t)

...
c(ζN ,N–, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t ∈ [–τ , ]. ()

3.3 (2 + 1) Parabolic PDEs with time delay
In the present subsection, we extend the application of the Chebyshev pseudospectral
approximation for a numerical treatment of the ( + ) parabolic PDEs with time delay,
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namely

∂v(p, q, t)
∂t

= μ
∂v(p, q, t)

∂p + μ
∂v(p, q, t)

∂q + μv(p, q, t – τ ) + f(p, q, t),

(p, q, t) ∈ � × � × �, ()

where

� ≡ [l, l], � ≡ [l, l], and � ≡ (, T],

subject to the initial data

v(p, q, t) = c(p, q, t), (p, q, t) ∈ � × � × [–τ , ], ()

and the boundary conditions

v(l, q, t) = c(q, t), v(l, q, t) = c(q, t), (q, t) ∈ � × �,

v(p, l, t) = c(p, t), v(p, l, t) = c(p, t), (p, t) ∈ � × �.
()

Firstly, we suppose we have the change of spatial variables

x =


l – l
p +

l + l

l – l
, y =


l – l

q +
l + l

l – l
,

and also v(p, q, t) = u(x, y, t). For the space variables, the above-mentioned problem trans-
forms into another two-dimensional problem in [–, ] × [–, ],

∂u(x, y, t)
∂t

= μ

(


l – l

)
∂u(x, y, t)

∂x

+ μ

(


l – l

)
∂u(x, y, t)

∂y + μu(x, y, t – τ ) + f(x, y, t),

(x, y, t) ∈ I × (, T], ()

subject to the initial data

u(x, y, t) = c(x, y, t), (x, y, t) ∈ I × [–τ , ], ()

and the boundary conditions

u(–, y, t) = c(y, t), u(, y, t) = c(y, t), (y, t) ∈ I × T,

u(x, –, t) = c(x, t), u(x, , t) = c(x, t), (x, t) ∈ I × T.
()

Secondly, we construct an algorithm based on the Chebyshev pseudospectral approxima-
tion to convert the previous two-dimensional PPDE into a system of ODEs with time delay.
We expand the approximate solution in the form

u(x, y, t) =
N∑

i=

M∑
j=

ai,j(t)Ti(x)Tj(y). ()
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Let {ζN ,i;  ≤ i ≤ N} and {λM,j;  ≤ j ≤ M} be the zeros of the Chebyshev polynomials
TN (x) and TM(y), respectively. Making use of the Chebyshev Gauss-Lobatto quadrature
and due to the orthogonality relation (), we have the inversion formulas for ai,j(t), thus

ai,j(t) =


hihj

N∑
l=

M∑
k=

(
Tj(λM,k)�M,kTi(ζN ,l)�N ,l

)
u(ζN ,l,λM,k , t). ()

The approximate solution () may be expressed in the form

u(x, y, t) =
N∑

i=

M∑
j=

N∑
l=

M∑
k=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

Ti(x)Tj(y)ul,k(t), ()

where

u(ζN ,n,λM,m, t) = un,m(t).

In what follows, the first-order partial derivative with respect to x for the solutions (),
at the specific collocation nodes ζN ,n and λM,m can be written as

∂xun,m(t) =
N∑

l=

M∑
k=

N∑
i=

M∑
j=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

∂x
(
Ti(ζN ,n)

)
Tj(λM,m)ul,k(t),

n = , , . . . , N , m = , , . . . , M, ()

or

∂xun,m(t) =
N∑

l=

M∑
k=

γ
n,m
l,k ul,k(t), ()

where γ
n,m
i,j are the expansion coefficients of the derivative

γ
n,m
l,k =

N∑
i=

M∑
j=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

∂x
(
Ti(ζN ,n)

)
Tj(λM,m). ()

Accordingly, the first-order derivative with respect to y for u(x, y, t), at the nodes ζN ,n and
λM,m, is

∂yun,m(t) =
N∑

l=

M∑
k=

N∑
i=

M∑
j=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

Ti(ζN ,n)∂y
(
Tj(λM,m)

)
ul,k(t),

n = , , . . . , N , m = , , . . . , M, ()

or

∂yun,m(t) =
N∑

l=

M∑
k=

δ
n,m
l,k ul,k(t), ()
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where

δ
n,m
l,k =

N∑
i=

M∑
j=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

Ti(ζN ,n)∂y
(
Tj(λM,m)

)
. ()

Also, the second-order partial derivatives with respect to x and y are, respectively, given
by

∂
x un,m(t) =

N∑
l=

M∑
k=

ξ
n,m
l,k ul,k(t), ()

where

ξ
n,m
l,k =

N∑
i=

M∑
j=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

∂
x
(
Ti(ζN ,n)

)
Tj(λM,m), ()

and

∂
y un,m(t) =

N∑
l=

M∑
k=

η
n,m
l,k ul,k(t), ()

where

η
n,m
l,k =

N∑
i=

M∑
j=

(Tj(λM,k)�M,kTi(ζN ,l)�N ,l)
hihj

Ti(ζN ,n)∂
y
(
Tj(λM,m)

)
. ()

Let us denote

ε = μ

(


l – l

)

, ε = μ

(


l – l

)

,

f(ζN ,n,λM,m, t) = fn,m(t), c(ζN ,n,λM,m, t) = cn,m(t).

Moreover, the values of u,k(t), uN ,k(t), ul,(t), and ul,N (t) can be given by

u,k(t) = c(λM,k , t), uN ,k(t) = c(λM,k , t), k = , . . . , M,

ul,(t) = c(ζN ,l, t), ul,N (t) = c(ζN ,l, t), l = , . . . , N .
()

In the Chebyshev pseudospectral approximation for the two-dimensional version of
parabolic PDEs with time delay, the residual of () is set to zero at (N – ) × (M – ) of
the nodes of Chebyshev Gauss-Lobatto quadrature. Therefore, adopting ()-() enables
one to write ()-() as a (N – ) × (M – ) system of ODEs with time delay,

u̇n,m(t) = ε

N∑
l=

M∑
k=

ξ
n,m
l,k ul,k(t) + ε

N∑
l=

M∑
k=

η
n,m
l,k ul,k(t) + μun,m(t – τ ) + fn,m(t),

n = , . . . , N – , m = , . . . , M – , ()
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subject to the initial data

un,m(t) = cn,m(t), n = , . . . , N – , m = , . . . , M – . ()

Finally, the system ()-() may be arranged in the matrix form, which can be solved by
the continuous RK scheme,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u̇,(t) · · · u̇,M–(t)

u̇,(t)
... u̇,M–(t)

· · · . . . · · ·
· · · . . . · · ·
· · · . . . · · ·

u̇N–,(t)
... u̇N–,M–(t)

u̇N–,(t) · · · u̇N–,M–(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ł,(t, u, . . . , uN–) · · · Ł,M–(t, u, . . . , uN–)

Ł,(t, u, . . . , uN–)
... Ł,M–(t, u, . . . , uN–)

· · · . . . · · ·
· · · . . . · · ·
· · · . . . · · ·

ŁN–,(t, u, . . . , uN–)
... ŁN–,M–(t, u, . . . , uN–)

ŁN–,(t, u, . . . , uN–) · · · ŁN–,M–(t, u, . . . , uN–)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ()

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u,(t) · · · u,M–(t)

u,(t)
... u,M–(t)

· · · . . . · · ·
· · · . . . · · ·
· · · . . . · · ·

uN–,(t)
... uN–,M–(t)

uN–,(t) · · · uN–,M–(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c,(t) · · · c,M–(t)

c,(t)
... c,M–(t)

· · · . . . · · ·
· · · . . . · · ·
· · · . . . · · ·

cN–,(t)
... cN–,M–(t)

cN–,(t) · · · cN–,M–(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t ∈ [–τ , ], ()

where

Łn,m(t, u, . . . , uN–) = ε

N∑
l=

M∑
k=

ξ
n,m
l,k ul,k(t)

+ ε

N∑
l=

M∑
k=

η
n,m
l,k ul,k(t) + μun,m(t – τ ) + fn,m(t),

n = , . . . , N – , m = , . . . , M – . ()

This system of first-order ODEs can be solved by the continuous RK scheme.
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4 Numerical results
To demonstrate the accuracy and applicability of the proposed method in the present pa-
per, four numerical examples are carried out by the algorithms presented in the previous
section with a comparison with a linearized compact difference scheme [] in the one-
dimensional case. In each of these examples, we shall highlight the accuracy and efficiency
of the method.

Example . Consider the delay parabolic equation

ut = uyy +
(
u(y, t – .)

) –



y(t – t – 
)

–
(

y


– y

)(
t – 

)

–
(

y


– y

)(
(t – .) – (t – .) – 

), (y, t) ∈ [, ] × (, ], ()

subject to the boundary conditions

u(, t) = –



(
t – t – 

)
, u(, t) = , t ∈ (, ], ()

and the related initial data

u(y, t) =
(

y


– y

)(
t – t – 

), (y, t) ∈ [, ] × [–., ]. ()

The exact solution of () is

u(y, t) =
(

y


– y

)(
t – t – 

)
, (y, t) ∈ [, ] × (, ]. ()

For several points, a comparison between the absolute errors of problem () which were
obtained using the linearized compact difference method (LCDM []) and the results
obtained by our method is presented in Table  at N = . Table  lists the maximum
absolute errors (MAEs) for different choices of N , while the best result for the maximum
absolute error achieved by using the linearized compact difference method (LCDM [])
with  space steps and , time steps was . × –.

Figure  shows the plot of the numerical solution ũ(x, t), where ε = – and N = . Fig-
ures  and  clearly demonstrate the coincidence of the curves of numerical and exact
solutions of problem (), with values of parameters listed in their captions. The absolute

Table 1 Comparison between the absolute errors of problem (61)

x t ME LCDM [39]

1.5 0.1 1.77× 10–9 6.83× 10–4

0.2 5.85× 10–10 5.54× 10–4

0.3 1.73× 10–10 1.59× 10–4

0.4 6.27× 10–11 4.12× 10–4

0.5 2.32× 10–11 1.12× 10–3

x t ME LCDM [39]

1.5 0.6 8.86× 10–12 1.93× 10–3

0.7 3.55× 10–12 2.80× 10–3

0.8 1.35× 10–12 3.65× 10–3

0.9 6.42× 10–13 4.41× 10–3

1.0 1.79× 10–13 4.98× 10–3

Table 2 MAEs using the Chebyshev collocation method for problem (61)

N 4 6 8 10

ME 2.26× 10–3 5.03× 10–5 9.84× 10–8 1.77× 10–9
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Figure 1 The numerical solution ũ(y, t) at N = 10.

Figure 2 The curves of numerical and exact solutions of problem (61) at N = 10.

error of problem () with ε = – and N =  is sketched in Figure . For the two values
of t =  and y = , the curves of absolute errors of problem () are displayed in Figures 
and , respectively.

Example . Consider the coupled nonlinear parabolic equation with time delay

ut(x, t) = uxx(x, t) + u(x, t)
(
 – u(x, t – τ )

)
–

(
v(x, t – τ )

)

+
e–– t

τ (eτ cos(πx) + sin(πx)(et/τ (– + (– + π)τ ) + τ sin(πx)))
τ

,

vt(x, t) = vxx(x, t) + v(x, t)
(
 – v(x, t – τ )

)
–

(
u(x, t – τ )

)

+
e–– t

τ (et/τ (– + (– + π)τ ) cos(πx) + τ cos(πx) + eτ sin(πx))
τ

,

(x, t) ∈ [,π ] × (, ],

()
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Figure 3 The curves of numerical and exact solutions of problem (61) at N = 10.

Figure 4 The absolute error of problem (61) at N = 8.

subject to the boundary conditions

u(, t) = u(, t) = , v(, t) = e–(+ t
τ ), v(π , t) = –e–(+ t

τ ), t ∈ (, ], ()

and the related initial data

u(x, t) = e–(+ t
τ ) sin(πx), v(x, t) = e–(+ t

τ ) cos(πx), (x, t) ∈ [,π ] × (–τ , ]. ()

We implemented the algorithm given in Section . and in Table , and we list the MAEs
between the exact and approximate solutions for u(x, t) and v(x, t) (denoted by M

E and
M

E) at various choices of N . The errors are calculated through a comparison with the
exact solution

u(x, t) = e–(+ t
τ ) sin(πx), v(x, t) = e–(+ t

τ ) cos(πx), (x, t) ∈ [,π ] × (, ]. ()
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Figure 5 The absolute error of problem (61) at t = 1 and N = 10.

Figure 6 The absolute error of problem (61) at y = 1.5 at N = 10.

Moreover, Table  displays the absolute errors for the two solutions (denoted by E(x, t)
and E(x, t)) for different points in the solution interval at N = . We see in these tables
that the results are very accurate for even small choices of the number of nodes, N .

Example . Consider the two-dimensional nonlinear parabolic equation with time delay

ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + u(x, y, t – τ )

– e–π t(eπτ + π – π) cos(πy) cos(πx),

(x, y, t) ∈ [, ] × [, ] × (, ], ()

subject to

u(, y, t) = e–π t cos(πy), u(, y, t) = –e–π t cos(πy),

u(x, , t) = e–π t cos(πx), u(x, , t) = –e–π t cos(πx),
()
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Table 3 MAEs of problem (65)

N 4 6 8 10 12

M1
E 1.03× 10–2 2.20× 10–4 2.47× 10–6 1.71× 10–8 1.22× 10–9

M2
E 3.51× 10–3 4.21× 10–5 3.82× 10–7 2.47× 10–9 2.96× 10–10

Table 4 Absolute errors for problem (65) at N = 12

x t E1(x, t) E2(x, t)

0.1 1 7.26× 10–11 3.63× 10–11

0.2 1.43× 10–10 5.98× 10–11

0.3 1.99× 10–10 6.42× 10–11

0.4 2.35× 10–10 5.95× 10–11

0.5 2.47× 10–10 4.23× 10–11

x t E1(x, t) E2(x, t)

0.6 1 2.35× 10–10 2.09× 10–11

0.7 1.99× 10–10 3.83× 10–12

0.8 1.43× 10–10 1.08× 10–11

0.9 7.29× 10–11 1.07× 10–11

1.0 5.45× 10–12 1.29× 10–15

and

u(x, y, t) = e–π t cos(πx) cos(πy), (x, y, t) ∈ [, ] × [, ] × (–, ]. ()

Assume that the absolute error is given by

E(x, y, t) =
∣∣u(x, y, t) – ũ(x, y, t)

∣∣, ()

where u(x, y, t) and ũ(x, y, t) are, respectively, the exact and approximate solutions at a spe-
cific point (x, y, t) in the solution domain. Also, the MAE is defined by

M
E = Max

{
E(x, y, t) : ∀(x, y, t) ∈ [, ] × [, ] × (, ]

}
. ()

The norm infinity is given by

M
E = Max

{
E(x, y, ti) : ∀(x, y) ∈ [, ] × [, ] × (, ]

}
. ()

Absolute errors of u(x, y, t) related to ()-() are introduced in Table  using the Cheby-
shev pseudospectral method for different points (x, y, t) at N = M = , compared with the
exact solution

u(x, y, t) = e–π t cos(πx) cos(πy). ()

Table  lists the MAEs and the norm infinities for u(x, y, t) for the two-dimensional prob-
lem ()-() at various choices of N and M. Again and from these tables, we clearly ob-
serve that the Chebyshev pseudospectral method is accurate for even small values of N .

Example . Consider the two-dimensional nonlinear parabolic equation with time delay

ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + u(x, y, t – τ )ux(x, y, t)

– eπ–π t cosh(x + y)
(
eπ (–+t)( + π ) + sinh(x + y)

)
,

(x, y, t) ∈ [, ] × [, ] × (, ], ()



Bhrawy et al. Boundary Value Problems  (2015) 2015:103 Page 18 of 20

Table 5 Absolute errors for problem (69)-(71) at N = M = 8

x y t E(x, y, t)

0.1 0.1 0 1.20835× 10–6

0.2 0.2 1.37925× 10–6

0.3 0.3 1.90777× 10–7

0.4 0.4 7.16319× 10–7

0.5 0.5 3.46945× 10–18

0.6 0.6 7.16319× 10–7

0.7 0.7 1.90777× 10–7

0.8 0.8 1.37925× 10–6

0.9 0.9 1.20835× 10–6

x y t E(x, y, t)

0.1 0.1 0.5 3.00614× 10–7

0.2 0.2 3.22082× 10–7

0.3 0.3 2.01012× 10–8

0.4 0.4 1.74909× 10–7

0.5 0.5 6.71257× 10–12

0.6 0.6 1.74909× 10–7

0.7 0.7 2.01036× 10–8

0.8 0.8 3.22081× 10–7

0.9 0.9 3.00614× 10–7

x y t E(x, y, t)

0.1 0.1 1 6.24895× 10–8

0.2 0.2 6.69564× 10–8

0.3 0.3 4.1809× 10–9

0.4 0.4 3.63598× 10–8

0.5 0.5 2.93906× 10–13

0.6 0.6 3.63598× 10–8

0.7 0.7 4.18141× 10–9

0.8 0.8 6.69562× 10–8

0.9 0.9 6.24895× 10–8

Table 6 The MAEs and the norm infinities of u(x, y, t) for problem (69)-(71)

N = M 4 6 8

M3
E 9.48× 10–3 1.64× 10–4 1.24× 10–6

M4
E 6.20× 10–4 8.91× 10–6 5.62× 10–8

Table 7 The MAEs and the norm infinities of u(x, y, t) for problem (76)-(78)

N = M 4 6 8

M3
E 1.55× 10–3 3.22× 10–6 3.89× 10–9

M4
E 6.86× 10–5 1.41× 10–7 9.47× 10–10

subject to

u(, y, t) = e–π t cosh(y), u(, y, t) = e–π t cosh( + y), (y, t) ∈ [, ] × (, ],

v(x, , t) = e–π t cosh(x), v(x, , t) = e–π t cosh(x + ), (x, t) ∈ [, ] × (, ],
()

and

u(x, y, t) = e–π t cosh(x + y), (x, y, t) ∈ [, ] × [, ] × (–, ]. ()

The exact solution is

u(x, y, t) = e–π t cosh(x + y), (x, y, t) ∈ [, ] × [, ] × (, ]. ()

Table  reports the MAEs and the norm infinities of u(x, y, t) for problem ()-() using
the present method for various choices of N and M. The numerical results presented in
this table show that the results are very accurate for small value of N and M.

5 Concluding remarks and future work
The Chebyshev Gauss-Lobatto pseudospectral method was investigated successfully in
spatial discretizations to get accurate approximate solutions of one-dimensional, coupled,
and two-dimensional parabolic PDEs with time delay. All of these problems were trans-
formed to systems of ODEs with time delays, greatly simplifying the problems. The con-
tinuous RK scheme is then applied to the resulting semidiscrete delay systems. From the
numerical experiments, by the obtained results the effectiveness and highly accuracy were
demonstrated of the Chebyshev Gauss-Lobatto pseudospectral method for solving the
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mentioned problems. The present algorithm is also available for approximating the solu-
tion for singularly perturbed delay parabolic equations.

We have outlined the implementation of a Chebyshev pseudospectral approximation
based on the Chebyshev Gauss-Lobatto quadrature nodes for solving the two-dimensional
time delay parabolic PDEs. The technique can be extended to more sophisticated prob-
lems with variable and distributed time delays. In principle, this method may be extended
to related problems in mathematical physics. It is possible to use other orthogonal poly-
nomials, say Legendre polynomials, or Jacobi polynomials to solve the mentioned prob-
lems in this article. Furthermore, the proposed spectral method might be developed by
considering the Chebyshev pseudospectral approximation in both temporal and spatial
discretizations. We should note that, as a numerical method, we are restricted to solv-
ing problems over a finite domain. Also, the pseudospectral approximation might be em-
ployed based on generalized Laguerre or modified generalized Laguerre polynomials to
solve similar problems in semi-infinite spatial intervals.
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