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Molecular basis for targeting tumor 
metabolism in cancer therapy

The high need for energy in rapidly growing 
tumor cells links their survival to the robust 
availability of energy. In contrast to normal 
cells, transformed cells lack metabolic flexibility 
and switch to a glycolytic phenotype for energy 
production, an adaptive response to intermit-
tent hypoxia that persists even in the presence of 
normal oxygen tension, the so-called Warburg 
effect [1–6]. This shift in energy production from 
oxidative phosphorylation to glycolysis is consid-
ered to be a fundamental property of cancer cells 
through the dysregulation of the pathways medi-
ated by c-Myc and Akt [7–9]. This dependence on 
glycolysis for energy production has been linked 
to protection against the constitutive oxidative 
stress experienced by tumor cells [10–13]. The 
glyco lytic switch can fuel the intracellular anti-
oxidant machinery with reducing equivalents, 
such as NADPH, to raise tolerance to reactive 
oxygen species. In addition, the high rate of glyco-
lytic flux associated with aerobic glyco lysis enables 
tumor cells to divert intermediates of glyco lysis 
into anabolic pathways for the synthesis of fatty 
acids, nucleotides and amino acids [2,4,14]. Recent 
evidence indicates that the glycolytic end prod-
uct lactate serves as a biosynthetic inter mediate 
for various cellular building blocks, thereby  
providing a growth advantage [15,16].

“The emerging view of cancers as a 
metabolic disease reveals opportunities 

for the development of new 
therapeutic strategies.”

The microenvironment-independent reliance 
on glycolysis and increased consumption of glu-
cose render cancer cells more vulnerable to inhi-
bition of glycolysis than normal cells, which can 
utilize diverse fuel sources for energy production. 

Consequently, targeting tumor metabolism has 
emerged as a promising therapeutic or preventa-
tive approach, of which the proof of principle is 
evident from studies on the anticarcinogenic effi-
cacy of chronic dietary energy restriction in vari-
ous animal models [17–21]. Since chronic energy 
restriction proves to be difficult to implement 
as an antitumor strategy in humans, alternative 
approaches have been used to mimic the benefi-
cial effects of energy restriction through interfer-
ence with tumor metabolism. An early example 
of such an approach was nutritional metabolic 
therapy for brain cancer using the ketogenic diet, 
a high-fat, low-carbohydrate diet that shifts the 
prime substrate for energy metabolism from glu-
cose to ketone bodies in order to disrupt tumor 
metabolism while maintaining the nutritional 
status of patients [22,23]. 

Tumor metabolism-targeted agents
More recently, the development of small mol-
ecule agents that target various aspects of glucose 
metabolism has been the focus of many inves-
tigations, which are summarized in this article, 
according to cellular target.

Glucose intake
Glufosfamide, a covalent conjugate of glucose 
with an ifosfamide mustard, is preferentially 
taken up by cancer cells and then metabolized to 
release a cytotoxic compound, isophosphoramide. 
Glufosfamide has undergone clinical trials in solid 
tumors, alone or in combination with gemcitabine, 
with low-to-modest activities [24,25].

Adenosine monophosphate-activated 
protein kinase
Agents that activate adenosine monophosphate-
activated protein kinase (AMPK) and, thus, 
induce cell cycle senescence include amino-imid-
azole-4-carboxamide ribonucleotide (AICAR) 
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and metformin and its analogs, phenformin and 
biguanide. AICAR is widely used experimen-
tally to activate AMPK and inhibit the growth 
of tumor cells in vitro [26–28] and in vivo [26,27,29]. 
Epidemiologic data have suggested the chemo-
preventive potential of metformin in breast can-
cer [30,31], which is supported by its efficacy in 
suppressing breast xenograft tumor growth in 
immunocompromised mice [32]. At the molecular 
level, metformin suppresses cancer cell growth by 
inhibiting mTOR-dependent translation initia-
tion through AMPK activation [33,34] or by the 
phosphorylating and inactivating acetyl-CoA car-
boxylase, accompanied by the suppression of fatty 
acid synthase, which leads to growth inhibition 
by blocking lipogenesis [28,35].

Glycolysis
Inhibitors of glycolysis include resveratrol, a 
phyto alexin with widely reported anticancer 
activity, which is attributable, in part, to its energy 
restriction mimetic effects [36–40]. Resveratrol also 
activates AMPK [41,42]. While many studies have 
demonstrated resveratrol’s anticancer activity in 
both in vitro and in vivo (largely in the context 
of chemoprevention) models [36,43], resveratrol 
shows no activity against the growth of existing 
tumors, except those of the skin and GI tract [44], 
which is, in part, caused by its poor systemic 
bioavailability [45–47]. OSU-CG12, a PPAR-g 
inactive ciglitazone derivative, is a new energy 
restriction mimetic agent with 20- and 1000-fold 
higher potency than resveratrol and 2-deoxyglu-
cose (2-DG), respectively [39]. OSU-CG12 inhib-
its glucose metabolism through mechanisms at 
different molecular levels, including the cellular 
uptake of glucose, Akt signaling and the tran-
scription of genes associated with glycolysis and 
energy metabolism. Investigation into additional 
mechanisms is ongoing.

Hexokinase II
Inhibition of the mitochondrial-bound hexoki-
nase (HK) II by the indazole carboxylic acid loni-
damine not only affects glucose metabolism, but 
also sensitizes cancer cells to apoptosis by facilitat-
ing the docking of Bax on the voltage-dependent 
anion channel, a HK II binding partner [48]. In 
Phase II trials, the combination of lonidamine 
and cytotoxic chemotherapy was active against 
advanced non-small-cell lung cancer and ovarian 
cancer [49,50]. However, as a single agent, lonida-
mine showed little activity against non-small-cell 
lung cancer or glioblastoma multiforme [51,52]. 
3-bromopyruvate, another HK II inhibitor, is 
an alkylating agent with structural similarity to 

lactate, which may enter cancer cells on the same 
transporter that exports lactate, and then induce 
ATP depletion [53]. 3-bromopyruvate has demon-
strated suppressive activities against hepatocellular 
carcinoma [54] and breast cancer [55], both in vitro 
and in vivo. 2-DG also inhibits HK II activity [56].

Phosphohexose isomerase
2-deoxyglucose blocks glycolysis through the 
inhibition of phosphohexose isomerase [57,58], 
leading to a depletion of ATP and glucose deriv-
atives required for protein glycosylation. 2-DG 
also induces the unfolded protein response, as 
does low glucose stress [59,60], and inhibits the 
growth of rat fibrosarcoma [61], hepatocellular car-
cinoma [62,63] and other tumors, as a single agent 
or in combination with chemotherapeutics [64,65]. 

“Further understanding of the signaling 
mechanisms underlying the antitumor 

effects of these tumor metabolism-
targeted agents will help foster novel 

strategies for cancer therapy.”

Pyruvate kinase
TLN-232 (or CAP-232) is a cyclic heptapep-
tide that targets the M2 splice isoform of pyru-
vate kinase, which has been reported to play an 
important role in cancer metabolism and tumor 
growth [66]. TLN-232 is currently undergoing a 
small Phase II study in metastatic melanoma [67].

Lactate dehydrogenase A
The treatment of P493 human lymphoma B cells 
with FX11, an inhibitor of lactate dehydroge-
nase A, reduces ATP levels and causes oxidative 
stress-induced cell death, and, thus, inhibits the 
progression of human lymphoma and pancreatic 
xenograft tumor growth [68]. 

Pyruvate dehydrogenase kinase
Dichloroacetate has been proposed as a novel 
and relatively nontoxic anticancer agent that can 
reverse the glycolytic phenotype in cancer cells 
through the inhibition of pyruvate dehydroge-
nase kinase [69]. Dichloroacetate has been used 
clinically for the treatment of lactic acidosis since 
1969, and is currently undergoing clinical trials 
to evaluate its toxicity in cancer patients. 

Monocarboxylate transporter 1
Inhibition of monocarboxylate transporter 1 
by a-cyano-4-hydroxy-cinnamate induces 
a switch from lactate-fueled respiration to 
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glycolysis in oxygenated tumor cells, and, thus, 
suppresses lung and colon xenograft tumor 
growth [70]. 

ATP citrate lyase
The inhibition of ATP citrate lyase by SB2499 
blocks cytosolic acetyl-CoA production and 
lipid synthesis, thereby inhibiting proliferation 
and survival of tumor cells displaying aerobic 
glycolysis in vitro and in vivo [71].

Opportunities & challenges
The emerging view of cancers as a metabolic 
disease reveals opportunities for the develop-
ment of new therapeutic strategies. Many of the 
tumor metabolism-targeted agents described in 
this article exhibit in vivo efficacy alone or in 
combination with chemotherapeutic drugs in 
advanced cancers. 

It is generally believed that interfering with 
energy metabolism causes ATP depletion 
and metabolic stress, leading to cell death. 
However, data from ours and other labora-
tories indicate that reducing glycolytic rate 
by energy restriction activates multiple sig-
naling pathways, including those mediated 
by the NAD+-dependent histone deacetylase 
sirtuin 1, AMPK and endoplasmic reticulum 
stress [39]. This complicated signaling network 
affects many aspects of cellular functions rel-
evant to cell cycle regulation, survival and 
aggressive phenotype, culminating in cancer 
cell death through autophagy and apoptosis. 
Therefore, it is plausible to achieve synergy 
with other molecularly targeted agents, such as 
kinase inhibitors or histone deacetylase inhibi-
tors, to kill cancer cells. Further understanding 
of the signaling mechanisms underlying the 

antitumor effects of these tumor metabolism-
targeted agents will help foster novel strategies 
for cancer therapy.

Despite substantial advances in the preclini-
cal development of these tumor metabolism-tar-
geted agents, a number of issues warrant further 
investigation. Toxicity is common among many 
drugs associated with high doses required to 
attain in vivo efficacy and/or off-target pharma-
cological activities. For example, the US FDA 
has suspended the clinical trial of 2-DG for 
advanced prostate cancer (NCT00633087), 
and that of lonidamine for benign prostate 
hypertrophy owing to hepatic side effects [101]. 
In addition, not all cancer cells are susceptible 
to interference with energy metabolism. AMPK 
activators, such as AICAR and metformin, were 
reported to selectively inhibit p53-deficient 
tumor cell growth, suggesting that AMPK acti-
vation forces a metabolic conversion that p53-/- 
cells are unable to execute [29]. Therefore, it is 
important to define the determining factor for 
the resistant phenotype for each type of tumor 
metabolism-targeted agent.
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