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A B S T R A C T

UVA comprises more than 90% of the solar UV radiation reaching the Earth. Artificial lightening lamps have also
been reported to emit significant amounts of UVA. Exposure to UVA has been associated with dermatological
disorders including skin cancer. At the molecular level, UVA damages different cellular biomolecules and trig-
gers inflammatory responses. The current study was devoted to investigate the potential protective effect of L-
carnitine against UVA-induced skin tissue injury using rats as a mammalian model. Rats were distributed into
normal control group (NC), L-carnitine control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-
carnitine-treated group (UVA-LC). L-carnitine significantly attenuated UVA-induced elevation of the DNA da-
mage markers 8-oxo-2′-deoxyguanosine (8-oxo-dG) and cyclobutane pyrimidine dimers (CPDs) as well as de-
creased DNA fragmentation and the activity of the apoptotic marker caspase-3. In addition, L-carnitine sub-
stantially reduced the levels of lipid peroxidation marker (TBARS) and protein oxidation marker (PCC) and
significantly elevated the levels of the total antioxidant capacity (TAC) and the antioxidant reduced glutathione
(GSH) in the skin tissues. Interestingly, L-carnitine upregulated the level of the DNA repair protein proliferating
cell nuclear antigen (PCNA). Besides it mitigated the UVA-induced activation of the oxidative stress-sensitive
signaling protein p38 and its downstream target c-Fos. Moreover, L-carnitine significantly downregulated the
levels of the early response proinflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, our results highlight,
for the first time, the potential attenuating effects of L-carnitine on UVA-induced skin tissue injury in rats that is
potentially mediated through suppression of UVA-induced oxidative stress and inflammatory responses.

1. Introduction

Solar light is the major source of UVA reaching the Earth [1]. In
addition, several artificial lightening sources have been reported to
emit variable amounts of UVA [2,3]. Although UVA has relatively low
energy as compared to other UV components, it penetrates deeper into
the skin and is considered as a major risk factor in the skin carcino-
genesis [4–7]. UVA induces damage to a variety of critical biomolecules
[1,8–10]. Its damaging effects are largely mediated through generation
of reactive oxygen species, ROS [10–12]. It has been reported that UVA
generates a variety of ROS including superoxide anion radical, hydroxyl

radical, hydrogen peroxide, and singlet oxygen [10,13–16]. ROS in-
teract with DNA, causing DNA lesions particularly 8-oxo-2′-deox-
yguanosine, 8-oxo-dG [9,12,17]. Energy transfer to DNA induces cy-
clobutane pyrimidines dimers, CPDs [17,18]. Accumulation of DNA
lesion such as 8-oxo-dG and CPDs has been linked to mutagenesis and
carcinogenesis [19,20]. In the same context, ROS interact with other
cellular biomolecules, causing lipid peroxidation and protein oxidative
modifications as well as initiation of inflammatory responses [9,21,22].
Importantly, modification of proteins that are involved in DNA repair
may boost mutagenicity of UVA [10,19].

L-carnitine is a naturally occurring quaternary amine that plays
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important role in transport of fatty acids across the mitochondrial
membrane for subsequent oxidation and energy production [23]. In
addition to it critical role in energy metabolism, L-carnitine exhibits
antioxidant and antiapoptotic properties [24–27]. It has been shown
that L-carnitine scavenges superoxide anion radical and the strong
oxidant hydrogen peroxide [24]. In addition, it scavenges hydroxyl
radical and prevents its generation through Fenton reaction [28,29]. L-
carnitine also increases the activity and expression of the antioxidant
enzymes superoxide dismutase and catalase in human hepatocytes [30].

Based on its antioxidant properties, L-carnitine may protect against
UVA-induced, ROS- mediated skin tissue injury. The aim of the current
study, thus, was to evaluate the potential protective effect of L-carnitine
against UVA-induced skin tissue injury using rats as an experimental
mammalian model.

2. Material and methods

2.1. Animals

Male Wistar rats weighing 200–230 g (50 days old) were housed in
groups of four per polypropylene cage. Rats were acclimatized to Taif
University animal facility for ten days before starting the experimental
work. Constant conditions of temperature (23 ± 2 °C), humidity
(60 ± 10%) and light/dark cycle (12 h/12 h) were maintained all over
the experimental period. Standard commercial rat chow and water were
allowed ad libitum. All procedures related to animal care, treatment,
and sampling were conducted in compliance with the guidelines of
National Institutes of Health guide for the care and use of Laboratory
animals (NIH Publications No. 8023, revised 1978). Ethical committee
approval number (2017/TU/Pharmacy/02).

2.2. Chemicals and kits

Thiobarbituric acid (TBA), trichloroacetic acid (TCA), 2, 4-dini-
trophenyl hydrazine (DNPH), 5, 5′- dithiobis [2-nitrobenzoic acid]
(DTNB), and L-carnitine were purchased from Sigma-Aldrich (St Louis,
MO, USA). All other chemicals were of high purity. Total antioxidant
capacity (TAC) kit was purchased from Cayman Chemical Company
(Ann Arbor, MI, USA). TNF-α, IL-6 and IL-1β kits were purchased from
Ray Biotech (Norcross, GA, USA). Caspase-3 colorimetric assay kit and
DNA fragmentation assay kit (TiterTACS In Situ Detection Kit) were
purchased from R & D systems (Minneapolis, MN, USA). 8-oxo-2′-
deoxyguanosine assay kit was purchased from Trevigen (HT 8-oxo-dG,
Trevigen, Inc., Gaithersburg, MD, USA). Cyclobutane pyrimidine dimer
assay kit was purchased from Cell Biolab (OxiSelect™, Cell Biolab, Inc,
San Diego, CA, USA). DNA extraction kit was purchased from Qiagen
(DNeasy Blood & Tissue Kit, Qiagen, Hilden, Germany). Rat skin dis-
sociation kit (Rat Skin PrimaCell™ I) were purchased from Chi Scientific
(Chi Scientific, Inc, USA). Antibodies for PCNA and actin were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Antibodies for total and phosphorylated forms of p38 and c-Fos were
purchased from cell signaling (Cell Signaling Technology, Inc, USA).

2.3. Experimental design and treatment protocol

Thirty-two male Wistar rats were randomly distributed into four
groups of eight-animal each. The dorsal area of all rats was shaved
(4 cm2) using a shaving machine. The shaved skin in different rat
groups was clean and free of any injury. The treatment protocol was as
the following: Group-1 (Normal control, NC): animals in this group
were not exposed to any UVA or any treatment all over the experi-
mental period. Group-2 (L-carnitine control, LC): animals in this group
were treated with 300mg/kg body weight of L-carnitine orally by
gastric gavage once daily for one week. Group-3 (UVA-Exposed, UVA):
rats in this group were directly illuminated with a single dose of UVA
(20 J cm−2) using the commercially available high intensity UVA lamp

(BlakRay-B100-A, 230W, 8900 μW/cm2, main peak emission 365 nm at
25 cm distance, UVP, Cambridge, UK, exposure period was 37.5min).
During illumination, the animals were in their polypropylene cages and
the distance between the UV light source and the animals was ca.
25 cm. Group-4 (UVA-Exposed and L-carnitine-treated group, UVA-LC):
rats in this group were handled the same way as UVA group except that
the animals were treated with 300mg/kg body weight of L-carnitine
orally by gastric gavage once daily for one week before exposure to
UVA. UVA exposure was done 2 h after the last dose of L-carnitine.
Doses of UVA and L-carnitine were consistence with previously pub-
lished work [1,31].

2.4. Sample preparation

Twelve hours after the exposure to UVA, rats in all groups were
euthanized by decapitation under pentobarbital sodium anesthesia
(65mg/kg, ip) [32] to collect skin tissue samples. The skin tissues were
quickly removed, rinsed in ice cold saline, and divided into three parts
for DNA extraction, tissue homogenization and skin tissue dissociation.
DNA was extracted using the commercially available Qiagen kit
(DNeasy Blood & Tissue Kit, Qiagen, Hilden, Germany) according to the
manufacturer's instructions. Skin tissue samples designated for homo-
genization were weighed and homogenized (10% w/v) in phosphate-
buffered saline (PBS) using T25 digital ultra-turrax homogenizer (IKA-
Werke GmbH & Co. KG, Germany). Homogenates were then centrifuged
for 15min at 10000×g and 4 °C. The supernatant was used for de-
termination of the proposed biochemical parameters. Skin tissues de-
signated for tissue dissociation was used to make a single cell suspen-
sion of epidermal keratenocytes using the commercially available Rat
Skin PrimaCell™ I (Chi Scientific, Inc, USA). The resulted single cell
suspension was used for determination of the level of DNA fragmen-
tation in different experimental groups.

2.5. Measured parameters

2.5.1. Measurement of 8-oxo-2′–deoxyguanosine
Levels of the oxidative DNA damage biomarker 8-oxo-2′–deox-

yguanosine (8-oxo-dG) in skin tissues of UVA-Exposed and control rats
were evaluated using the commercially available HT 8-oxo-dG ELISA II
kit (Trevigen, Inc., Gaithersburg, MD, USA). The assay employs stan-
dard 8-oxo-dG immobilized to 96-well plate. Specific antibody (anti 8-
oxo-dG monoclonal antibody) is employed to bind competitively to the
immobilized 8-oxo-dG and to that in test samples. Upon washing, an-
tibodies that bind to 8-oxo-dG in the test samples are washed away
while antibodies bind to the immobilized 8-oxo-dG are retained.
Detection was performed with HRP-conjugated secondary antibody and
a colorimetric substrate. Optical density is inversely proportional to the
level of 8-oxo-dG present in the test samples [33]. The optical density
was measured using SPECTRAmax PLUS384 microplate spectro-
photometer (Molecular devices, Sunnyvale, California, USA).

2.5.2. Measurement of cyclobutane pyrimidine dimer
CPDs level was determined using the commercially available im-

munoassay colorimetric ELISA kit (OxiSelect, Cell Biolab, INC.) ac-
cording to the manufacturer's instructions. CPD-DNA standards or test
DNA samples were first heat-denatured before adsorption onto a 96-
well DNA high-binding plate. The CPDs present in the standard or the
test sample were probed with anti-CPD antibody followed by HRP-
conjugated secondary antibody. The level of CPD in the test sample was
determined using a standard curve that is prepared from a pre-
determined CPD-DNA standard [34].

2.5.3. Determination of caspase-3 activity
The commercially available colorimetric assay kit (R &D systems)

was used for determination of the activity of the apoptotic marker
caspase-3 according to the manufacturer's instructions as described
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previously [35]. The method based on the ability of caspase-3 in the test
sample to cleave a labeled substrate DEVD-pNA (acetyl-Asp-Glu-Val-
Asp p-nitroanilide) with subsequent release of a chromophore (p-ni-
troanilide, pNA). The optical density was then measured spectro-
photometrically at 405 nm.

2.5.4. Determination of DNA fragmentation
DNA fragmentation in a single cell suspension of the skin epidermal

keratinocytes were determined in different experimental groups using
the colorimetric TiterTACS In Situ Detection Kit (R&D systems,
Minneapolis, MN, USA) according to the manufacturer's instructions.
The assay based on labeling the DNA nicks with biotinylated nucleotide
using terminal deoxynucleotidyl transferase (TdT). The labeled DNA
nicks are then allowed to react with streptavidin-HRP conjugate fol-
lowed by the HPR colorimetric substrate TACS-Sapphire. The color
produced is proportional to the level of the DNA fragmentation in the
sample and can be measured spectrophotometrically at 450 nm. The
optical density was measured using SPECTRAmax PLUS384 microplate
spectrophotometer (Molecular devices, Sunnyvale, California, USA) and
results were presented as a relative optical density to that of the normal
control group.

2.5.5. Determination of PCNA, p38 MAPK, and c-Fos protein abundance in
the skin tissues

Western blotting analysis was used to determine the protein abun-
dance of PCNA, total and phosphorylated forms of p38 MAPK, and total
and phosphorylated forms of c-Fos in the skin tissue homogenates of
different experimental groups in accordance with the previously de-
scribed work [36,37] using the corresponding primary antibodies.
Briefly, equal amounts of protein (40 μg/lane) form the supernatants of
the skin tissue homogenates of different experimental groups were
subjected to SDS-PAGE and Western blotting analysis. PC10 primary
antibody (sc-56, Santa Cruz Biotechnology, Santa Cruz, CA, USA, di-
lution of 1: 2000) and goat anti-mouse secondary antibody (dilution of
1: 3000, Bio-Rad) were used to detect PCNA. Rabbit monoclonal pri-
mary antibodies (Cell Signaling Technology, Inc, USA) for p38 (D13E1),
phosphorylated p38 (12F8), c-Fos (9F6), and phosphorylated c-Fos
(D82C12) were used to detect the corresponding proteins in a dilution
of 1:1000. Sc-1616-R primary antibody (dilution of 1: 300, Santa Cruz
Biotechnology, Santa Cruz, CA) was used for the loading control β-
actin. The density of different protein bands were quantitated and
normalized to the loading control in intermediately exposed films using
ImageJ program (ImageJ, NIH, USA).

2.5.6. Measurement of lipid peroxidation
Level of thiobarbituric acid reactive substances (TBARS) was mea-

sured to evaluate lipid peroxidation in the skin tissue samples according
to the previously described method [38]. Briefly, equal volumes of the
skin tissue homogenates and thiobarbituric acid (TBA) reagent (0.5%
w/v TBA prepared in 20% w/v TCA) are allowed to react for 30min at
95 °C. The reaction was then stopped by placing on ice. After cen-
trifugation (10000×g for 15min at 4 °C), the optical density of the
supernatant was measured at 532 nm using Optima 3000 Nano UV–-
Visible spectrophotometer (Optima, Itabashi-ku, Tokyo, Japan). The
results were expressed as TBARS relative optical density at 532 nm.

2.5.7. Measurement of protein carbonyl content
Previously described method of Hawkins et al. [39] was employed

to determine the levels of the protein oxidation marker (protein car-
bonyl content). Proteins in the skin tissue samples were allowed to react
with 2, 4- dinitrophenyl hydrazine (DNPH). Proteins were then sepa-
rated by TCA precipitation and re-dissolved in guanidine hydro-
chloride. The absorbance of protein solution was then measured spec-
trophotometrically at 370 nm.

2.5.8. Determination of total antioxidant capacity
Total antioxidant capacity (TAC) in the skin tissues of different

experimental groups was evaluated using Cayman TAC kit in ac-
cordance with the manufacturer's instructions. Briefly, the procedure
allows competition between antioxidants in the test samples and a
standard antioxidant (2, 2-azino-di-[3-ethylbenzthiazoline sulphonate,
ABTS) to react with a standard oxidant. Higher levels of oxidized TBTS
indicate lower levels of TAC. The optical density of the oxidized ABTS
was measured spectrophotometrically at 405 nm and the levels of TAC
were determined using a standard curve [40].

2.5.9. Determination of reduced glutathione
Previously described method of Ellman [41] was used for determi-

nation of reduced glutathione (GSH) levels in the skin tissue homo-
genates. Briefly, deproteinated skin tissue homogenates were allowed to
react with 5, 5′- dithiobis [2-nitrobenzoic acid] (DTNB). The optical
density of the colored solution produced was then measured spectro-
photometrically at 412 nm.

2.5.10. Determination of the proinflammatory cytokines
Ray Biotech ELISA kits were used for determination of the proin-

flammatory cytokines TNF-α, IL-6, and IL-1β levels in the skin tissues of
different experimental groups in accordance with the previously de-
scribed method [42]. Briefly, cytokines in the skin tissue samples were
allowed to interact with corresponding antibodies pre-coated to a 96-
well plate. Biotinylated antibodies and HRP-linked streptavidin were
applied sequentially. Eventually, 3, 3′, 5, 5′-tetramethylbenzidine
(TMB) reagent was added to the wells and the optical density was then
measured at 450 nm. Standard curves were used to calculate the cyto-
kines levels.

2.6. Statistical analysis

One way analysis of variance (ANOVA) followed by Tukey–Kramer
multiple comparison test was used to analyze the statistical significance
among groups. SigmaPlot 12 statistics software (Systat Software, Inc.,
San Jose, CA) was used to construct graphs and perform statistical
analysis. Data were expressed as mean ± standard deviation.
Differences were considered significant at p < 0.05.

3. Results

3.1. L-carnitine ameliorates UVA-induced DNA damage and reduces
apoptotic cell death

To explore the possible protective effect of L-carnitine against UVA-
induced DNA damage and apoptotic cell death, DNA damage markers 8-
oxo-dG and CPDs along with the activity of the apoptotic marker cas-
pase-3 and the level of DNA fragmentation were evaluated in the skin
tissue of different experimental groups. The results showed that ex-
posure to UVA resulted in 6.9-fold increase in 8-oxo-dG level (Fig. 1A),
4.4-fold increase in CPDs level (Fig. 1B) as well as 4-fold increase in the
caspase-3 activity (Fig. 1C) and 3.5-fold increase in the level of DNA
fragmentation (Fig. 1D) in UVA-Exposed group (UVA) compared to
unexposed normal control group (NC). Administration of L-carnitine,
however, effectively reduced the levels of both 8-oxo-dG and CPDs by
52% and 25% respectively (Fig. 1A&B, UVA-LC group). In addition, it
diminished the activity of caspase-3 and reduced DNA fragmentation to
52% and 57% of their values in UVA group respectively (Fig. 1C&D,
UVA-LC group).

3.2. L-carnitine mitigates UVA-induced oxidative stress

Illumination of shaved-skin rats with UVA resulted in obvious in-
crease in the lipid peroxidation marker, TBARS (Fig. 2A) along with the
protein oxidation marker, PCC (Fig. 2B) in UVA group as compared to
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NC group. In the same context, it substantially diminished the anti-
oxidant defense in the skin tissues as demonstrated by a significant
reduction in the levels of the total antioxidant capacity, TAC, as well as
reduced glutathione, GSH (Fig. 3). L-carnitine administration, however,
significantly attenuated lipid and protein oxidative modification as re-
vealed by significant reduction in the levels of TBARS and PCC (Fig. 2,
UVA-LC group). Besides it boosted the antioxidant defense mechanisms
in the skin tissues as demonstrated by significant elevation of TAC and
GSH levels (Fig. 3, UVA-LC group).

3.3. L-carnitine upregulated PCNA protein abundance and attenuated p38
and c-Fos activation

Although UVA is less energetic than UVB, it has been reported that
UVA-induced DNA damage is more mutagenic than that of UVB [19].
Damage to critical DNA repair proteins by UVA is believed to be the
underlining cause of the higher mutagenic potential of UVA [10]. To
evaluate the possible damaging effects of UVA on the critical DNA re-
pair protein PCNA, protein abundance of PCNA was determined using
Western blotting analysis. The results showed that exposure to UVA
significantly lowered the PCNA protein abundance compared to the
normal control group (Fig. 4). Interestingly, administration of L-carni-
tine significantly upregulated PCNA protein abundance compared to
the UVA group (Fig. 4, UVA-LC group). The results also indicated that
exposure of the shaved-skin rats to UVA induced activation (phos-
phorylation) of both p38 and its downstream target c-Fos. L-carnitine
administration, however, significantly reduced the UVA-induced acti-
vation of both p38 and c-Fos (Fig. 6).

3.4. L-carnitine downregulates the levels of the proinflammatory cytokines

Exposure of shaved-skin rats to UVA markedly elevated the levels of
the early response proinflammatory cytokines TNF-α, (296%), IL-6
(320%) and IL-1β (235%) in UVA group as compared to NC group

(Fig. 5). Administration of L-carnitine efficiently downregulated the
levels of TNF-α (48% reduction), IL-6 (47% reduction) as well as IL-1β
(39% reduction) (Fig. 5, UVA-LC group).

4. Discussion

Solar light as well as several artificial lightening lamps represent
chief sources of exposure to UVA radiation [2,3,10]. UVA has been
implicated in a variety of dermatological disorders including skin aging
and carcinogenesis [43–45]. The ability of UVA to induce DNA damage
such as 8-oxo-dG and CPDs is linked to its mutagenic potential
[19,20,46]. Consistent with the ability of UVA to induce DNA damage,
the results of the current work revealed that exposure of the shaved-
skin rats to UVA significantly elevated the levels of 8-oxo-dG and CPDs
in UVA-Exposed group as compared to the normal control groups, NC
(Fig. 1). Unlike shorter-wavelength UV radiation, UVA damages DNA
indirectly through generation of ROS [9,11]. In the range of
320–400 nm, UVA produces the powerful ROS, singlet oxygen, through
interaction with endogenous photosynthesizes such as porphyrins, fla-
vins, and quinones [11,12]. UVA is also capable of generating other
ROS such as hydrogen peroxide, superoxide anion, and hydroxyl radi-
cals [47]. ROS interact directly with DNA, causing DNA oxidative da-
mage particularly 8-oxo-dG [48,49]. Triplet energy transfer from UVA-
excited chromophores to DNA resulted in formation of CPDs [18]. The
current study revealed that administration of L-carnitine significantly
decreased levels of both 8-oxo-dG and CPDs by 52% and 25% respec-
tively as compared to UVA group (Fig. 1, UVA-LC group). The ability of
L-carnitine to attenuate the oxidative DNA damage is potentially re-
lated to its ROS scavenging properties. Previous studies have shown
that L-carnitine scavenges a variety of ROS including superoxide anion
radical, hydrogen peroxide, and hydroxyl radical [28,29]. Beside it
boosts the activity and expression of the antioxidant enzymes super-
oxide dismutase and catalase [30]. The results highlight the potential
attenuating effect of L-carnitine on UVA-induced DNA damage in the

Fig. 1. Levels of the DNA damage and apop-
totic markers in the skin tissues. Levels of 8-
oxo-2′–deoxyguanosine, 8-oxo-dG (A); cyclobu-
tane pyrimidine dimers, CPD-DNA (B); and the
activity of the apoptotic marker caspase-3 (C);
and the level of the DNA fragmentation (D) were
measured in the skin tissues of the normal control
(NC), L-carnitine control (LC), UVA-Exposed
(UVA), and UVA-Exposed and L-carnitine-treated
(UVA-LC) groups. Data are presented as mean ±
standard deviation. (*) significant difference

from NC, (#) significant difference from UVA
group, p< 0.05 (n=8). 8-oxo-dG is expressed as
nM per μl of the used DNA sample (0.2 μg/μl) and
CPD-DNA is expressed as ng per ml of the used
DNA sample (4 μg/ml).
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skin tissues.
It has been reported that CPDs stalls replication fork and is a major

inducer of apoptotic cell death [12,47]. In addition, 8-Oxo-dG has been
implicated in the UV-induced apoptotic cell death [47,50]. Further-
more, UVA-generated ROS have been reported to induce apoptotic cell
death independent of DNA lesions [47,51]. In consistence with these
studies, the current work showed that exposure of shaved-skin rats to
UVA induced 4-fold increase in the activity of the apoptotic cell death
marker caspase-3 and 3.5-fold increase in the level of DNA fragmen-
tation, an important hallmark of cellular apoptosis, compared to the
normal control group (Fig. 1 C&D). L-carnitine, however, significantly
diminished the activity of caspase-3 and the level of the DNA frag-
mentation (Fig. 1C&D, UVA-LC group) which may be due to its ability
to scavenge different types of ROS with subsequent reduction in 8-Oxo-
dG and CPDs levels, signifying the mitigating effect of L-carnitine on
UVA-induced skin tissue injury.

In addition to induction of DNA lesions and subsequent initiation of
apoptosis, UVA-generated ROS interact with other cellular

macromolecules, causing lipids and proteins oxidative modifications
[9,21]. In line with these studies, the current work showed a state of
oxidative stress in the skin tissues of the UVA-Exposed rats. The levels
of both lipid peroxidation marker, TBARS, and protein oxidation
marker, PCC, were significantly elevated (Fig. 2) while the levels of
both total antioxidant capacity, TAC, and the antioxidant reduced
glutathione, GSH, were significantly decreased (Fig. 3). Peroxidation of
membrane lipids has been reported to disrupt cellular membranes in-
cluding mitochondrial membrane [52,53]. Damage of the mitochon-
drial membrane releases cytochrome c to the cytoplasm with sub-
sequent initiation of the intrinsic apoptotic pathway [54] which
explains the ability of ROS to induce DNA-independent apoptotic cell
death. L-carnitine administration significantly decreased levels of both
TBARS and PCC (Fig. 2, UVA-LC group) and boosted the levels of both
TAC and GSH (Fig. 3, UVA-LC group), reinforcing its mitigating effect
on UVA-induced skin tissue injury.

The homotrimeric protein PCNA is a crucial player in DNA re-
plication and repair processes. As a sliding clamp, PCNA increases the

Fig. 2. Levels of oxidative stress markers in the skin tissues. Levels of the lipid per-
oxidation marker thiobarbituric acid reactive substance, TBARS (A); the protein oxidation
marker protein carbonyl content, PCC (B) were evaluated at the end of the experiment in
the skin tissues of different experimental groups; normal control group (NC), L-carnitine
control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-carnitine-treated
group (UVA-LC). Data are presented as mean ± standard deviation. (*) significant dif-
ference from NC group and (#) significant difference from UVA group, p< 0.05 (n= 8).

Fig. 3. Antioxidants levels in the skin tissues. Levels of total antioxidant capacity, TAC
(A) and reduced glutathione, GSH (B) were evaluated in the skin tissues of the normal
control group (NC), L-carnitine control group (LC), UVA-Exposed group (UVA), and UVA-
Exposed and L-carnitine-treated group (UVA-LC). Data are presented as mean ±
standard deviation. (*) significant difference from NC group and (#) significant differ-
ence from UVA group, p< 0.05 (n=8).
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processivity of DNA polymeases and plays essential roles in mismatch,
and base and nucleotide excision repair [10,55]. Exposure to UVA in-
duces different oxidative modifications to cellular proteins. UVA in-
duces oxidation-based PCNA subunit crosslinking and oxidation-de-
pendent degradation of other cellular proteins such as protein tyrosine
phosphatases [10,56]. The results of the current work showed that
exposure to UVA decreased PCNA protein abundance as detected by
Western blotting analysis (Fig. 4). Decreased abundance of such critical
DNA repair protein by UVA may explain, at least in part, the previous
observation that UVA-generated CPDs have higher mutagenic potential
than that generated by UVB [10,18,19]. While PCNA protein de-
gradation may represent a plausible explanation for the observed de-
crease in PCNA abundance, the possibility of oxidative modification of
PCNA epitope should not be excluded. Interestingly, L-carnitine ad-
ministration upregulated PCNA protein abundance as compared to
UVA-Exposed group (Fig. 4, UVA-LC group). The ability of the anti-
oxidant L-carnitine to upregulate PCNA protein levels after UVA ex-
posure supports the notion that oxidation is required for the observed
change in the PCNA abundance.

UVA has been implicated in activation of the mitogen-activated
protein kinases (MAPKs) including p38 MAPK [57]. p38, in turn, acti-
vates several downstream signaling molecules including c-Fos [58]. As
a part of the AP-1 transcription factor, c-Fos plays critical roles in
regulation of expression of several genes responsible for cell arrest,
apoptosis, and inflammatory responses [58,59]. It has been demon-
strated that UVA-induced activation of p38 is mediated through re-
active oxygen species [57,60]. The current work showed that exposure
of the shaved-skin rats to UVA induced activation (phosphorylation) of
both p38 and its downstream target c-Fos. L-carnitine administration,
however, significantly reduced the UVA-induced activation of both p38

Fig. 4. PCNA protein abundance in the skin tissues. PCNA Western blotting (upper
panel) and its quantification (lower panel) were evaluated at the end of the experiment in
the skin tissues of different experimental groups: normal control group (NC), L-carnitine
control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-carnitine-treated
group (UVA-LC). Data are presented as mean ± standard deviation. (*) significant dif-
ference from NC group and (#) significant difference from UVA group, p< 0.05. Western
blotting was done in triplicates using pooled tissue homogenates.

Fig. 5. Levels of the proinflammatory cytokines in skin tissues. Levels of TNF-α (A),
IL-6 (B), and IL-1β (C) were determined at the end of the experiment in skin tissues of
different rat groups; normal control group (NC), L-carnitine control group (LC), UVA-
Exposed group (UVA), and UVA-Exposed and L-carnitine-treated group (UVA-LC). Data
are presented as mean ± standard deviation. (*) significant difference from NC group
and (#) significant difference from UVA group, p< 0.05 (n=8).
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and c-Fos (Fig. 6), emphasizing the ameliorating effect of L-carnitine
against UVA-induced skin tissue injury which may be mediated through
amelioration of oxidative stress.

The current study also showed that exposure to UVA induced in-
flammatory response that was demonstrated by a significant elevation
in the proinflammatory cytokines levels including TNF-α, IL-6, and IL-
1β (Fig. 5) in the UVA-Exposed group when compared to the normal
control group. Analogous to our findings, Li, M. et al. [61] has de-
monstrated that exposure to UVA is associated with increased levels of
TNF-α, IL-6 and IL-1β as well as the oxidative stress markers in cultured
skin cells. ROS have been implicated in the induction of the proin-
flammatory cytokines through activation of a variety of transcription
factors including nuclear factor kappa B (NF-κB) and activator protein-1
(AP-1) [22]. While ROS induce inflammatory cytokines, TNF-α, in turn,
has been implicated in the generation of ROS [62]. UVA, thus, gen-
erates ROS though activation of the endogenous photosensitizers as
well as through induction of inflammatory responses. L-carnitine sig-
nificantly downregulated the levels of TNF-α, IL-6 as well as IL-1β,
supporting its mitigating activity on UVA-induced skin tissue injury.
The ability of L-carnitine to downregulate the levels of the proin-
flammatory cytokines may be explained, at least in part, on the bases of
the ability of L-carnitine to counteract the damaging effects of UVA-
generated ROS.

In conclusion, our results accentuate the mitigating effect of L-car-
nitine on UVA-induced skin tissue injury in rats which might be
mediated through downregulation of the oxidative stress, oxidative
stress-sensitive signaling cascade, and the inflammatory response.
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